These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37755188)

  • 41. Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review.
    Funari V; Toller S; Vitale L; Santos RM; Gomes HI
    Environ Sci Pollut Res Int; 2023 May; 30(21):59128-59150. PubMed ID: 37041362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of hollow cylindrical wheat stem for electromembrane extraction of thorium in water samples.
    Khajeh M; Pedersen-Bjergaard S; Barkhordar A; Bohlooli M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():328-32. PubMed ID: 25228041
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uranium and thorium sequential separation from norm samples by using a SIA system.
    Mola M; Nieto A; Peñalver A; Borrull F; Aguilar C
    J Environ Radioact; 2014 Jan; 127():82-7. PubMed ID: 24172603
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chromatographic separation of the theranostic radionuclide
    Mastren T; Radchenko V; Engle JW; Weidner JW; Owens A; Wyant LE; Copping R; Brugh M; Nortier FM; Birnbaum ER; John KD; Fassbender ME
    Anal Chim Acta; 2018 Jan; 998():75-82. PubMed ID: 29153089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computation-Assisted Nanopore Detection of Thorium Ions.
    Roozbahani GM; Chen X; Zhang Y; Juarez O; Li D; Guan X
    Anal Chem; 2018 May; 90(9):5938-5944. PubMed ID: 29648804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of extraction chromatography to the separation of thorium and uranium dissolved in a solution of high salt concentration.
    Fujiwara A; Kameo Y; Hoshi A; Haraga T; Nakashima M
    J Chromatogr A; 2007 Jan; 1140(1-2):163-7. PubMed ID: 17161412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of separation technology for the removal of radium-223 from decayed thorium-227 in drug formulations. Material screening and method development.
    Frenvik JO; Kristensen S; Ryan OB
    Drug Dev Ind Pharm; 2016 Aug; 42(8):1215-24. PubMed ID: 26569601
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution and transport of radionuclides in a boreal mire--assessing past, present and future accumulation of uranium, thorium and radium.
    Lidman F; Ramebäck H; Bengtsson Å; Laudon H
    J Environ Radioact; 2013 Jul; 121():87-97. PubMed ID: 22832231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: purification of targeted thorium conjugates on cation exchange columns.
    Frenvik JO; Dyrstad K; Kristensen S; Ryan OB
    Drug Dev Ind Pharm; 2017 Sep; 43(9):1440-1449. PubMed ID: 28402142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recovery of copper and silver from industrial e-waste leached solutions using sustainable liquid membrane technology: a review.
    Kahar INS; Othman N; Noah NFM; Suliman SS
    Environ Sci Pollut Res Int; 2023 May; 30(25):66445-66472. PubMed ID: 37101217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Daily intake of thorium by an Indian urban population.
    Dang HS; Jaiswal DD; Sunta CM
    Sci Total Environ; 1986 Dec; 57():73-7. PubMed ID: 3810149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparisons between radioactive and non-radioactive gas lantern mantles.
    Furuta E; Yoshizawa Y; Aburai T
    J Radiol Prot; 2000 Dec; 20(4):423-31. PubMed ID: 11140713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part I: purification of decayed thorium-227 on cation exchange columns.
    Frenvik JO; Dyrstad K; Kristensen S; Ryan OB
    Drug Dev Ind Pharm; 2017 Feb; 43(2):225-233. PubMed ID: 27628177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels.
    Masson O; Pourcelot L; Boulet B; Cagnat X; Videau G
    J Environ Radioact; 2015 Mar; 141():146-52. PubMed ID: 25613358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ambient monitoring of airborne radioactivity near a former thorium processing plant.
    Jensen L; Regan G; Goranson S; Bolka B
    Health Phys; 1984 May; 46(5):1021-33. PubMed ID: 6327571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An improved radiochemical separation of uranium and thorium in environmental samples involving peroxide fusion.
    Galindo C; Mougin L; Nourreddine A
    Appl Radiat Isot; 2007 Jan; 65(1):9-16. PubMed ID: 16831555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thorium excretion in feces by mineral sands workers.
    Terry KW; Hewson GS; Meunier G
    Health Phys; 1995 Jan; 68(1):105-9. PubMed ID: 7661919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity.
    Arogunjo AM; Höllriegl V; Giussani A; Leopold K; Gerstmann U; Veronese I; Oeh U
    J Environ Radioact; 2009 Mar; 100(3):232-40. PubMed ID: 19147259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in the applications of thorium-based metal-organic frameworks and molecular clusters.
    Li ZJ; Guo X; Qiu J; Lu H; Wang JQ; Lin J
    Dalton Trans; 2022 May; 51(19):7376-7389. PubMed ID: 35438104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Determining thorium level in urine with its preliminary chromatographic extraction].
    Kononykina NN; Astafurov VI; Zablotskaia ID; Popov VI
    Gig Tr Prof Zabol; 1990; (11):54-6. PubMed ID: 2086364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.