These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 37755326)
1. FLASH Genome Editing Pipeline: An Efficient and High-Throughput Method to Construct Arrayed CRISPR Library for Plant Functional Genomics. Yao L; Wang X; Ke R; Chen K; Xie K Curr Protoc; 2023 Sep; 3(9):e905. PubMed ID: 37755326 [TBL] [Abstract][Full Text] [Related]
2. A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. Chen K; Ke R; Du M; Yi Y; Chen Y; Wang X; Yao L; Liu H; Hou X; Xiong L; Yang Y; Xie K Mol Plant; 2022 Feb; 15(2):243-257. PubMed ID: 34619328 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha. Sugano SS; Nishihama R Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367 [TBL] [Abstract][Full Text] [Related]
4. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species. Wang P mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980 [No Abstract] [Full Text] [Related]
5. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Liu W; Rudis MR; Cheplick MH; Millwood RJ; Yang JP; Ondzighi-Assoume CA; Montgomery GA; Burris KP; Mazarei M; Chesnut JD; Stewart CN Plant Cell Rep; 2020 Feb; 39(2):245-257. PubMed ID: 31728703 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. Antony Ceasar S; Ignacimuthu S Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799 [TBL] [Abstract][Full Text] [Related]
7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
8. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize. Lee K; Zhu H; Yang B; Wang K Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633 [TBL] [Abstract][Full Text] [Related]
9. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. Do PT; Nguyen CX; Bui HT; Tran LTN; Stacey G; Gillman JD; Zhang ZJ; Stacey MG BMC Plant Biol; 2019 Jul; 19(1):311. PubMed ID: 31307375 [TBL] [Abstract][Full Text] [Related]
11. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. Sun S; Han X; Jin R; Jiao J; Wang J; Niu S; Yang Z; Wu D; Wang Y Plant Sci; 2024 May; 342():112029. PubMed ID: 38354755 [TBL] [Abstract][Full Text] [Related]
12. Development of an Agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea genome editing. Gupta SK; Vishwakarma NK; Malakar P; Vanspati P; Sharma NK; Chattopadhyay D Protoplasma; 2023 Sep; 260(5):1437-1451. PubMed ID: 37131068 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 Vector Construction for Gene Knockout. Freudhofmaier M; Hoyle JW; Maghuly F Methods Mol Biol; 2024; 2788():295-316. PubMed ID: 38656522 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding. González MN; Massa GA; Andersson M; Storani L; Olsson N; Décima Oneto CA; Hofvander P; Feingold SE Methods Mol Biol; 2023; 2653():333-361. PubMed ID: 36995636 [TBL] [Abstract][Full Text] [Related]
15. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells. Peng Y; Yang T; Tang X; Chen F; Wang S Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277 [TBL] [Abstract][Full Text] [Related]
16. A Robust Protocol for CRISPR-Cas9 Gene Editing in Human Suspension Cell Lines. Wardyn JD; Chan ASY; Jeyasekharan AD Curr Protoc; 2021 Nov; 1(11):e286. PubMed ID: 34748280 [TBL] [Abstract][Full Text] [Related]
17. A simplified and improved protocol of rice transformation to cater wide range of rice cultivars. Rengasamy B; Manna M; Jonwal S; Sathiyabama M; Thajuddin NB; Sinha AK Protoplasma; 2024 Jul; 261(4):641-654. PubMed ID: 38217739 [TBL] [Abstract][Full Text] [Related]
18. Efficient Cas9-based Genome Editing Using CRISPR Analysis Webtools in Severe Early-onset-obesity Patient-derived iPSCs. Patel A; Iannello G; Diaz AG; Sirabella D; Thaker V; Corneo B Curr Protoc; 2022 Aug; 2(8):e519. PubMed ID: 35950852 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-Based Gene Editing in Soybean. Bao A; Tran LP; Cao D Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in Genome Editing Using CRISPR/Cas9. Ding Y; Li H; Chen LL; Xie K Front Plant Sci; 2016; 7():703. PubMed ID: 27252719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]