BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37755367)

  • 1. Carbon Nanotube-encapsulated Chestnut Inner Shell O,N-doped Graded Porous Carbon as Stable and High-Sulfur Loading Electrode for Lithium-Sulfur Batteries.
    Song P; Han L; Zhu L; Zhang R; Chai Y; Lei Z; Wang L; Shen S
    Chem Asian J; 2023 Nov; 18(22):e202300604. PubMed ID: 37755367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CS-CNTs homojunctions prepared by
    Qi M; Liu Y; Li Q; Yu Y; Gu J; Bai Z; Yan S; Wang L; Liu Y
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34384073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergy between Interconnected Porous Carbon-Sulfur Cathode and Metallic MgB
    Garapati MS; Sundara R
    ACS Omega; 2020 Sep; 5(35):22379-22388. PubMed ID: 32923795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Polysulfides-Confined All-in-One Porous Microcapsule Lithium-Sulfur Battery Cathode.
    Liu J; Zhu M; Shen Z; Han T; Si T; Hu C; Zhang H
    Small; 2021 Oct; 17(41):e2103051. PubMed ID: 34510738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An individual sandwich hybrid nanostructure of cobalt disulfide in-situ grown on N doped carbon layer wrapped on multi-walled carbon nanotubes for high-efficiency lithium sulfur batteries.
    Lin Y; Ouyang Z; He S; Song X; Luo Y; Zhao J; Xiao Y; Lei S; Yuan C; Cheng B
    J Colloid Interface Sci; 2022 Mar; 610():560-572. PubMed ID: 34838317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored multifunctional hybrid cathode substrate configured with carbon nanotube-modified polar Co(PO
    Song Z; Lu X; Li X; Jiang N; Huo Y; Zheng Q; Lin D
    J Colloid Interface Sci; 2020 Sep; 575():220-230. PubMed ID: 32361238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for High-Performance Lithium-Sulfur Batteries.
    Li M; Fu K; Wang Z; Cao C; Yang J; Zhai Q; Zhou Z; Ji J; Xue Y; Tang C
    Chemistry; 2020 Dec; 26(72):17567-17573. PubMed ID: 32965742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-doped CNTs wrapped sulfur-loaded hierarchical porous carbon cathode for Li-sulfur battery studies.
    Nulu A; Nulu V; Sohn KY
    RSC Adv; 2024 Jan; 14(4):2564-2576. PubMed ID: 38226142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries.
    Chen T; Cheng B; Zhu G; Chen R; Hu Y; Ma L; Lv H; Wang Y; Liang J; Tie Z; Jin Z; Liu J
    Nano Lett; 2017 Jan; 17(1):437-444. PubMed ID: 28073275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discarded COVID-19 masks-derived-doped porous carbon for lithium-sulfur batteries.
    Rong Q; Yuwen C; Liu P; Cheng F; Xia S
    Int J Energy Res; 2022 Sep; ():. PubMed ID: 36245693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries.
    Jin F; Xiao S; Lu L; Wang Y
    Nano Lett; 2016 Jan; 16(1):440-7. PubMed ID: 26675744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorinated bamboo-structure carbon nanotubes: as attractive substrates for the cathodes of lithium-sulfur batteries.
    Liu W; Shen H; Liu M; Xue X; Song B; Wang S; Kong F
    Nanotechnology; 2023 Dec; 35(9):. PubMed ID: 38016442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of NiFe-LDHs Modified Carbon Nanotubes as the High-Performance Sulfur Host for Lithium-Sulfur Batteries.
    Zhang L; Li R; Yue W
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells.
    Manoj M; Muhamed Ashraf C; Jasna M; Anilkumar KM; Jinisha B; Pradeep VS; Jayalekshmi S
    J Colloid Interface Sci; 2019 Feb; 535():287-299. PubMed ID: 30316115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries.
    Chen F; Ma L; Ren J; Zhang M; Luo X; Li B; Song Z; Zhou X
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29891822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Core-Shell-Structured S@C@MnO
    Ni L; Zhao G; Yang G; Niu G; Chen M; Diao G
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34793-34803. PubMed ID: 28817251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes.
    Song J; Gordin ML; Xu T; Chen S; Yu Z; Sohn H; Lu J; Ren Y; Duan Y; Wang D
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4325-9. PubMed ID: 25663183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution.
    Liu Q; Zhang J; He SA; Zou R; Xu C; Cui Z; Huang X; Guan G; Zhang W; Xu K; Hu J
    Small; 2018 May; 14(20):e1703816. PubMed ID: 29665267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing N active sites by in-situ growing conformal C
    Chu F; Yu M; Jiang H; Mu J; Li X
    J Colloid Interface Sci; 2022 Dec; 627():838-847. PubMed ID: 35901563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.