These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37755619)

  • 41. Comparing a simplified FEM approach with the mass-spring model for surgery simulation.
    Harders M; Hutter R; Rutz A; Niederer P; Székely G
    Stud Health Technol Inform; 2003; 94():103-9. PubMed ID: 15455873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constraint-based soft tissue simulation for virtual surgical training.
    Tang W; Wan TR
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2698-706. PubMed ID: 24876107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Needle-tissue interaction model based needle path planning method.
    Lei Y; Du S; Li M; Xu T; Hu Y; Wang Z
    Comput Methods Programs Biomed; 2024 Jan; 243():107858. PubMed ID: 37879198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time biomechanical modelling of the liver using LightGBM model.
    Zhu J; Su Y; Liu Z; Liu B; Sun Y; Gao W; Fu Y
    Int J Med Robot; 2022 Dec; 18(6):e2433. PubMed ID: 35679513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.
    Tehrani JN; Yang Y; Werner R; Lu W; Low D; Guo X; Wang J
    Phys Med Biol; 2015 Nov; 60(22):8833-49. PubMed ID: 26531324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simulation of 3D tumor cell growth using nonlinear finite element method.
    Dong S; Yan Y; Tang L; Meng J; Jiang Y
    Comput Methods Biomech Biomed Engin; 2016; 19(8):807-18. PubMed ID: 26213205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel biomedical meshing algorithm and evaluation based on revised Delaunay and Space Disassembling.
    Yu X; Gu L; Lv S; Liu J; Huang P; Kong X
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5091-4. PubMed ID: 18003151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An electromechanical based deformable model for soft tissue simulation.
    Zhong Y; Shirinzadeh B; Smith J; Gu C
    Artif Intell Med; 2009 Nov; 47(3):275-88. PubMed ID: 19819116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Segmental meshing of brain tissues and simulation of soft tissue deformation].
    Chen CX; Wang R; Peng XL; Wu JN
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Oct; 31(10):1675-81. PubMed ID: 22027766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analyzing Liver Surface Indentation for In Vivo Refinement of Tumor Location in Minimally Invasive Surgery.
    Yang Y; Yung KL; Hung TWR; Yu KM
    Ann Biomed Eng; 2021 May; 49(5):1402-1415. PubMed ID: 33258091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Navigation system with real-time finite element analysis for minimally invasive surgery.
    Morooka K; Nakasuka Y; Kurazume R; Chen X; Hasegawa T; Hashizume M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2996-9. PubMed ID: 24110357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Soft tissue modelling through autowaves for surgery simulation.
    Zhong Y; Shirinzadeh B; Alici G; Smith J
    Med Biol Eng Comput; 2006 Sep; 44(9):805-21. PubMed ID: 16960747
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in collision detection and non-linear finite mixed element modelling for improved soft tissue simulation in craniomaxillofacial surgical planning.
    Wang S; Yang J; Gee JC
    Int J Med Robot; 2010 Mar; 6(1):28-41. PubMed ID: 19946886
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time simulation of contact and cutting of heterogeneous soft-tissues.
    Courtecuisse H; Allard J; Kerfriden P; Bordas SP; Cotin S; Duriez C
    Med Image Anal; 2014 Feb; 18(2):394-410. PubMed ID: 24440853
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data.
    Dogan F; Celebi MS
    Int J Med Robot; 2016 Sep; 12(3):410-20. PubMed ID: 26459224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An efficient soft tissue characterization algorithm from in vivo indentation experiments for medical simulation.
    Kim J; Ahn B; De S; Srinivasan MA
    Int J Med Robot; 2008 Sep; 4(3):277-85. PubMed ID: 18727148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.