These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37756140)

  • 1. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.
    Wu S; Zhu G; Zhang JS; Banerjee D; Bass JD; Ling C; Yano K
    Phys Chem Chem Phys; 2014 May; 16(19):8921-6. PubMed ID: 24691556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.
    Ash BJ; Worsfold SR; Vukusic P; Nash GR
    Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D Dynamic Directional Amplification (DDA) in Phononic Metamaterials.
    Kalderon M; Paradeisiotis A; Antoniadis I
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.
    Beltramo PJ; Schneider D; Fytas G; Furst EM
    Phys Rev Lett; 2014 Nov; 113(20):205503. PubMed ID: 25432048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.
    Alonso-Redondo E; Schmitt M; Urbach Z; Hui CM; Sainidou R; Rembert P; Matyjaszewski K; Bockstaller MR; Fytas G
    Nat Commun; 2015 Sep; 6():8309. PubMed ID: 26390851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on bandgaps in two-dimensional phononic crystal with two resonators.
    Gao N; Wu JH; Yu L
    Ultrasonics; 2015 Feb; 56():287-93. PubMed ID: 25216625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Graphene Phononic Crystals for Heat Phonon Engineering.
    Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustically trapped colloidal crystals that are reconfigurable in real time.
    Caleap M; Drinkwater BW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6226-30. PubMed ID: 24706925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces.
    Jin Y; Pennec Y; Bonello B; Honarvar H; Dobrzynski L; Djafari-Rouhani B; Hussein MI
    Rep Prog Phys; 2021 Sep; 84(8):. PubMed ID: 33434894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture Controls Phonon Propagation in All-Solid Brush Colloid Metamaterials.
    Cang Y; Sainidou R; Rembert P; Matyjaszewski K; Bockstaller M; Graczykowski B; Fytas G
    Small; 2024 Mar; 20(13):e2304157. PubMed ID: 37972268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous occurrence of structure-directed and particle-resonance-induced phononic gaps in colloidal films.
    Still T; Cheng W; Retsch M; Sainidou R; Wang J; Jonas U; Stefanou N; Fytas G
    Phys Rev Lett; 2008 May; 100(19):194301. PubMed ID: 18518452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional dielectric phoxonic crystals with network topology.
    Ma TX; Wang YS; Wang YF; Su XX
    Opt Express; 2013 Feb; 21(3):2727-32. PubMed ID: 23481729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypersonic acoustic excitations in binary colloidal crystals: big versus small hard sphere control.
    Tommaseo G; Petekidis G; Steffen W; Fytas G; Schofield AB; Stefanou N
    J Chem Phys; 2007 Jan; 126(1):014707. PubMed ID: 17212511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of the Acoustic Bandgaps in Hypersonic Colloidal Phononics: The Role of the Elastic Impedance.
    Cang Y; Sainidou R; Rembert P; Magnabosco G; Still T; Vogel N; Graczykowski B; Fytas G
    J Phys Chem B; 2022 Sep; 126(34):6575-6584. PubMed ID: 35997523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypersonic phononic crystals.
    Gorishnyy T; Ullal CK; Maldovan M; Fytas G; Thomas EL
    Phys Rev Lett; 2005 Mar; 94(11):115501. PubMed ID: 15903869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical reinforcement of polymer colloidal crystals by supercritical fluids.
    Babacic V; Varghese J; Coy E; Kang E; Pochylski M; Gapinski J; Fytas G; Graczykowski B
    J Colloid Interface Sci; 2020 Nov; 579():786-793. PubMed ID: 32673855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.