BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37756342)

  • 1. Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.).
    Akohoue F; Koch S; Lieberherr B; Kessel B; Presterl T; Miedaner T
    PLoS One; 2023; 18(9):e0292095. PubMed ID: 37756342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools.
    Gaikpa DS; Kessel B; Presterl T; Ouzunova M; Galiano-Carneiro AL; Mayer M; Melchinger AE; Schön CC; Miedaner T
    Theor Appl Genet; 2021 Mar; 134(3):793-805. PubMed ID: 33274402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm.
    Brauner PC; Schipprack W; Utz HF; Bauer E; Mayer M; Schön CC; Melchinger AE
    Theor Appl Genet; 2019 Jun; 132(6):1897-1908. PubMed ID: 30877313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combination of QTL Mapping and GradedPool-Seq to Dissect Genetic Complexity for Gibberella Ear Rot Resistance in Maize Using an IBM Syn10 DH Population.
    Yuan G; Li Y; He D; Shi J; Yang Y; Du J; Zou C; Ma L; Pan G; Shen Y
    Plant Dis; 2023 Apr; 107(4):1115-1121. PubMed ID: 36131495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot.
    Zhou G; Li S; Ma L; Wang F; Jiang F; Sun Y; Ruan X; Cao Y; Wang Q; Zhang Y; Fan X; Gao X
    Plant Dis; 2021 Jul; 105(7):1984-1991. PubMed ID: 33616427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding.
    Strigens A; Schipprack W; Reif JC; Melchinger AE
    PLoS One; 2013; 8(2):e57234. PubMed ID: 23451190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize.
    Böhm J; Schipprack W; Utz HF; Melchinger AE
    Theor Appl Genet; 2017 May; 130(5):861-873. PubMed ID: 28194473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by
    Yuan G; He D; Shi J; Li Y; Yang Y; Du J; Zou C; Ma L; Gao S; Pan G; Shen Y
    Phytopathology; 2023 Jul; 113(7):1317-1324. PubMed ID: 36721376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production.
    Mesterhazy A; Szabó B; Szél S; Nagy Z; Berényi A; Tóth B
    Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. European maize landraces made accessible for plant breeding and genome-based studies.
    Hölker AC; Mayer M; Presterl T; Bolduan T; Bauer E; Ordas B; Brauner PC; Ouzunova M; Melchinger AE; Schön CC
    Theor Appl Genet; 2019 Dec; 132(12):3333-3345. PubMed ID: 31559526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize.
    Brauner PC; Melchinger AE; Schrag TA; Utz HF; Schipprack W; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2017 Jan; 130(1):175-186. PubMed ID: 27709251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
    Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ
    BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize.
    Kebede AZ; Woldemariam T; Reid LM; Harris LJ
    Theor Appl Genet; 2016 Jan; 129(1):17-29. PubMed ID: 26643764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic predictability of interconnected biparental maize populations.
    Riedelsheimer C; Endelman JB; Stange M; Sorrells ME; Jannink JL; Melchinger AE
    Genetics; 2013 Jun; 194(2):493-503. PubMed ID: 23535384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize.
    Han S; Utz HF; Liu W; Schrag TA; Stange M; Würschum T; Miedaner T; Bauer E; Schön CC; Melchinger AE
    Theor Appl Genet; 2016 Feb; 129(2):431-44. PubMed ID: 26660464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic diversity in seedling roots of European flint maize in response to cold.
    Frey FP; Pitz M; Schön CC; Hochholdinger F
    BMC Genomics; 2020 Apr; 21(1):300. PubMed ID: 32293268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces.
    Zeitler L; Ross-Ibarra J; Stetter MG
    G3 (Bethesda); 2020 Jul; 10(7):2497-2506. PubMed ID: 32467127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usefulness of temperate-adapted maize lines developed by doubled haploid and single-seed descent methods.
    Santos IGD; Verzegnazzi AL; Edwards J; Frei UK; Boerman N; Tonello Zuffo L; Pires LPM; de La Fuente G; Lübberstedt T
    Theor Appl Genet; 2022 Jun; 135(6):1829-1841. PubMed ID: 35305125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.).
    Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP
    Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
    Unterseer S; Pophaly SD; Peis R; Westermeier P; Mayer M; Seidel MA; Haberer G; Mayer KF; Ordas B; Pausch H; Tellier A; Bauer E; Schön CC
    Genome Biol; 2016 Jul; 17(1):137. PubMed ID: 27387028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.