BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37756375)

  • 1. Response to Folweiler KA et al., Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes With Distinct Acute Injury Profiles and Long-Term Outcomes (DOI: 10.1089/neu.2019.6705).
    Wang CY; Wu JC; Kuo YH
    J Neurotrauma; 2024 Jan; 41(1-2):292-293. PubMed ID: 37756375
    [No Abstract]   [Full Text] [Related]  

  • 2. Response to Wang et al.,
    Hood KF; Cohen AS
    J Neurotrauma; 2024 Feb; 41(3-4):539. PubMed ID: 37776180
    [No Abstract]   [Full Text] [Related]  

  • 3. Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes.
    Folweiler KA; Sandsmark DK; Diaz-Arrastia R; Cohen AS; Masino AJ
    J Neurotrauma; 2020 Jun; 37(12):1431-1444. PubMed ID: 32008422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to Walker et al. (doi: 10.1089/neu.2017.5359): Predicting Long-Term Global Outcome after Traumatic Brain Injury.
    Foks KA; Dijkland SA; Steyerberg EW
    J Neurotrauma; 2019 Apr; 36(8):1382-1383. PubMed ID: 30009689
    [No Abstract]   [Full Text] [Related]  

  • 5. Response to Foks et al. (doi: 10.1089/neu.2018.5979): Why Our Long-Term Functional Prognosis Tools are a Valuable Contribution to the Traumatic Brain Injury Outcome Literature.
    Walker WC; Sima AP; Hoffman JM; Harrison-Felix C; Agyemang AA; Stromberg KA; Marwitz JH; Brown AW; Graham KM; Merchant R; Kreutzer JS
    J Neurotrauma; 2019 Apr; 36(8):1384-1385. PubMed ID: 30375265
    [No Abstract]   [Full Text] [Related]  

  • 6. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients.
    DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P;
    Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Severe Is Severe Disability After Traumatic Brain Injury? Response to Sarigul B et al.,
    Bodien YG; Beaulieu CL; Giacino JT; Weintraub A; Whyte J; Williams MW
    J Neurotrauma; 2023 Nov; 40(21-22):2449-2451. PubMed ID: 37476969
    [No Abstract]   [Full Text] [Related]  

  • 8. Response to Hutchinson M. "The Concept of Mild Traumatic Brain Injury: Response to Palacios et al." (doi: 10.1089/neu.2023.0011).
    Mukherjee P; Palacios EM; Manley GT
    J Neurotrauma; 2023 Aug; 40(15-16):1808-1809. PubMed ID: 36855321
    [No Abstract]   [Full Text] [Related]  

  • 9. Unsupervised learning of early post-arrest brain injury phenotypes.
    Elmer J; Coppler PJ; May TL; Hirsch K; Faro J; Solanki P; Brown M; Puyana JS; Rittenberger JC; Callaway CW
    Resuscitation; 2020 Aug; 153():154-160. PubMed ID: 32531403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to Machamer et al., "Symptom Frequency and Persistence in the First Year after Traumatic Brain Injury: A TRACK-TBI Study" (doi: 10.1089/neu.2021.0348).
    Zhang B; Daneshvar DH; Polich G; Glenn MB
    J Neurotrauma; 2023 Mar; 40(5-6):595-596. PubMed ID: 36352817
    [No Abstract]   [Full Text] [Related]  

  • 11. Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization.
    Pugh MJ; Kennedy E; Prager EM; Humpherys J; Dams-O'Connor K; Hack D; McCafferty MK; Wolfe J; Yaffe K; McCrea M; Ferguson AR; Lancashire L; Ghajar J; Lumba-Brown A
    J Neurotrauma; 2021 Dec; 38(23):3222-3234. PubMed ID: 33858210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining patterns of comorbidity evolution in patients with multiple chronic conditions using unsupervised multi-level temporal Bayesian network.
    Faruqui SHA; Alaeddini A; Jaramillo CA; Potter JS; Pugh MJ
    PLoS One; 2018; 13(7):e0199768. PubMed ID: 30001371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning.
    Stevens E; Dixon DR; Novack MN; Granpeesheh D; Smith T; Linstead E
    Int J Med Inform; 2019 Sep; 129():29-36. PubMed ID: 31445269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening.
    Omta WA; van Heesbeen RG; Shen I; de Nobel J; Robers D; van der Velden LM; Medema RH; Siebes APJM; Feelders AJ; Brinkkemper S; Klumperman JS; Spruit MR; Brinkhuis MJS; Egan DA
    SLAS Discov; 2020 Jul; 25(6):655-664. PubMed ID: 32400262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of Hidden Markov Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury.
    Asgari S; Adams H; Kasprowicz M; Czosnyka M; Smielewski P; Ercole A
    Crit Care Med; 2019 Nov; 47(11):e880-e885. PubMed ID: 31517697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Claims-Based Outcome Phenotypes in Survivors of Pediatric Traumatic Brain Injury.
    Maddux AB; Sevick C; Cox-Martin M; Bennett TD
    J Head Trauma Rehabil; 2021 Jul-Aug 01; 36(4):242-252. PubMed ID: 33656469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonality of acute kidney injury phenotypes in England: an unsupervised machine learning classification study of electronic health records.
    Bolt H; Suffel A; Matthewman J; Sandmann F; Tomlinson L; Eggo R
    BMC Nephrol; 2023 Aug; 24(1):234. PubMed ID: 37558976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning.
    Tritt A; Yue JK; Ferguson AR; Torres Espin A; Nelson LD; Yuh EL; Markowitz AJ; Manley GT; Bouchard KE;
    Sci Rep; 2023 Dec; 13(1):21200. PubMed ID: 38040784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response to Korley et al.: Progesterone Treatment Does Not Decrease Serum Levels of Biomarkers of Glial and Neuronal Cell Injury in Moderate and Severe TBI Subjects: A Secondary Analysis of the Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment (ProTECT) III Trial (DOI: 10.1089/neu.2020.7072).
    Sayeed I; Stein DG
    J Neurotrauma; 2021 Oct; 38(20):2923-2926. PubMed ID: 34130480
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach.
    Wang L; Zhang Y; Yao R; Chen K; Xu Q; Huang R; Mao Z; Yu Y
    BMC Cardiovasc Disord; 2023 Aug; 23(1):426. PubMed ID: 37644414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.