These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37756404)

  • 1. Battery metal recycling by flash Joule heating.
    Chen W; Chen J; Bets KV; Salvatierra RV; Wyss KM; Gao G; Choi CH; Deng B; Wang X; Li JT; Kittrell C; La N; Eddy L; Scotland P; Cheng Y; Xu S; Li B; Tomson MB; Han Y; Yakobson BI; Tour JM
    Sci Adv; 2023 Sep; 9(39):eadh5131. PubMed ID: 37756404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash Recycling of Graphite Anodes.
    Chen W; Salvatierra RV; Li JT; Kittrell C; Beckham JL; Wyss KM; La N; Savas PE; Ge C; Advincula PA; Scotland P; Eddy L; Deng B; Yuan Z; Tour JM
    Adv Mater; 2023 Feb; 35(8):e2207303. PubMed ID: 36462512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.
    Boxall NJ; Adamek N; Cheng KY; Haque N; Bruckard W; Kaksonen AH
    Waste Manag; 2018 Apr; 74():435-445. PubMed ID: 29317159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries.
    Yang L; Gao Z; Liu T; Huang M; Liu G; Feng Y; Shao P; Luo X
    Environ Sci Technol; 2023 Mar; 57(11):4591-4597. PubMed ID: 36881640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of valuable metals from spent cathode material by organic pyrolysis combined with in-situ thermal reduction.
    Zhang G; Liu Z; Yuan X; He Y; Wei N; Wang H; Zhang B
    J Hazard Mater; 2022 May; 430():128374. PubMed ID: 35150992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rare earth elements from waste.
    Deng B; Wang X; Luong DX; Carter RA; Wang Z; Tomson MB; Tour JM
    Sci Adv; 2022 Feb; 8(6):eabm3132. PubMed ID: 35138886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries.
    Tao Y; Rahn CD; Archer LA; You F
    Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.