These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37756405)

  • 21. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Inductively-Powered Wireless Neural Recording and Stimulation System for Freely-Behaving Animals.
    Lee B; Jia Y; Mirbozorgi SA; Connolly M; Tong X; Zeng Z; Mahmoudi B; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):413-424. PubMed ID: 30624226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain.
    Kim WS; Jeong M; Hong S; Lim B; Park SI
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device.
    Hong S; Kim WS; Han Y; Cherukuri R; Jung H; Campos C; Wu Q; Park SI
    Bio Protoc; 2022 Mar; 12(5):e4341. PubMed ID: 35592610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience.
    Yang Y; Wu M; Wegener AJ; Vázquez-Guardado A; Efimov AI; Lie F; Wang T; Ma Y; Banks A; Li Z; Xie Z; Huang Y; Good CH; Kozorovitskiy Y; Rogers JA
    Nat Protoc; 2022 Apr; 17(4):1073-1096. PubMed ID: 35173306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A wirelessly powered and controlled device for optical neural control of freely-behaving animals.
    Wentz CT; Bernstein JG; Monahan P; Guerra A; Rodriguez A; Boyden ES
    J Neural Eng; 2011 Aug; 8(4):046021. PubMed ID: 21701058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft, wireless and subdermally implantable recording and neuromodulation tools.
    Cai L; Gutruf P
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33607646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless opto-electro neural interface for experiments with small freely behaving animals.
    Jia Y; Khan W; Lee B; Fan B; Madi F; Weber A; Li W; Ghovanloo M
    J Neural Eng; 2018 Aug; 15(4):046032. PubMed ID: 29799437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.
    Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S
    Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.
    Shin G; Gomez AM; Al-Hasani R; Jeong YR; Kim J; Xie Z; Banks A; Lee SM; Han SY; Yoo CJ; Lee JL; Lee SH; Kurniawan J; Tureb J; Guo Z; Yoon J; Park SI; Bang SY; Nam Y; Walicki MC; Samineni VK; Mickle AD; Lee K; Heo SY; McCall JG; Pan T; Wang L; Feng X; Kim TI; Kim JK; Li Y; Huang Y; Gereau RW; Ha JS; Bruchas MR; Rogers JA
    Neuron; 2017 Feb; 93(3):509-521.e3. PubMed ID: 28132830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device.
    Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models.
    Gutruf P; Yin RT; Lee KB; Ausra J; Brennan JA; Qiao Y; Xie Z; Peralta R; Talarico O; Murillo A; Chen SW; Leshock JP; Haney CR; Waters EA; Zhang C; Luan H; Huang Y; Trachiotis G; Efimov IR; Rogers JA
    Nat Commun; 2019 Dec; 10(1):5742. PubMed ID: 31848334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Magnetism-Optogenetic" System for Wireless and Highly Sensitive Neuromodulation.
    Tian Y; Zhang Y; Zhang X; Pan H; Zhang L; Liu S; Chen Y; Su L; Zhao P; Chang J; Wang H
    Adv Healthc Mater; 2022 Feb; 11(3):e2102023. PubMed ID: 34812596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
    Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe.
    Li L; Lu L; Ren Y; Tang G; Zhao Y; Cai X; Shi Z; Ding H; Liu C; Cheng D; Xie Y; Wang H; Fu X; Yin L; Luo M; Sheng X
    Nat Commun; 2022 Feb; 13(1):839. PubMed ID: 35149715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves.
    Chen JC; Kan P; Yu Z; Alrashdan F; Garcia R; Singer A; Lai CSE; Avants B; Crosby S; Li Z; Wang B; Felicella MM; Robledo A; Peterchev AV; Goetz SM; Hartgerink JD; Sheth SA; Yang K; Robinson JT
    Nat Biomed Eng; 2022 Jun; 6(6):706-716. PubMed ID: 35361934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An implantable wireless optogenetic stimulation system for peripheral nerve control.
    Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.