BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37756598)

  • 1. Sodium butyrate does not protect spinal motor neurons from AMPA-induced excitotoxic degeneration in vivo.
    Prior-González M; Lazo-Gómez R; Tapia R
    Dis Model Mech; 2023 Oct; 16(10):. PubMed ID: 37756598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degeneration of spinal motor neurons by chronic AMPA-induced excitotoxicity in vivo and protection by energy substrates.
    Netzahualcoyotzi C; Tapia R
    Acta Neuropathol Commun; 2015 May; 3():27. PubMed ID: 25968178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Dysfunction during the Early Stages of Excitotoxic Spinal Motor Neuron Degeneration in Vivo.
    Santa-Cruz LD; Guerrero-Castillo S; Uribe-Carvajal S; Tapia R
    ACS Chem Neurosci; 2016 Jul; 7(7):886-96. PubMed ID: 27090876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo.
    Ramírez-Jarquín UN; Tapia R
    Neuroscience; 2016 Sep; 331():78-90. PubMed ID: 27320208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow and selective death of spinal motor neurons in vivo by intrathecal infusion of kainic acid: implications for AMPA receptor-mediated excitotoxicity in ALS.
    Sun H; Kawahara Y; Ito K; Kanazawa I; Kwak S
    J Neurochem; 2006 Aug; 98(3):782-91. PubMed ID: 16893420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early motor deficits in the phalangeal fine movements induced by chronic AMPA infusion in the rat spinal cord assessed by a novel method: Phalangeal tension recording test.
    Colín E; Ramírez-Jarquín UN; Tapia R
    Neurosci Lett; 2020 Nov; 739():135411. PubMed ID: 33086093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo.
    Corona JC; Tapia R
    J Neurochem; 2004 May; 89(4):988-97. PubMed ID: 15140197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression.
    Bruneteau G; Simonet T; Bauché S; Mandjee N; Malfatti E; Girard E; Tanguy ML; Behin A; Khiami F; Sariali E; Hell-Remy C; Salachas F; Pradat PF; Fournier E; Lacomblez L; Koenig J; Romero NB; Fontaine B; Meininger V; Schaeffer L; Hantaï D
    Brain; 2013 Aug; 136(Pt 8):2359-68. PubMed ID: 23824486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis - vulnerability of lower motor neurons to proximal excitotoxicity.
    Blizzard CA; Southam KA; Dawkins E; Lewis KE; King AE; Clark JA; Dickson TC
    Dis Model Mech; 2015 Mar; 8(3):215-24. PubMed ID: 25740331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Mitochondria Degeneration in Spinal Motor Neurons Triggered by Chronic Over-activation of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors in the Rat Spinal Cord in Vivo.
    Ramirez-Jarquin UN; Lopez-Huerta VG; Tapia R
    Neuroscience; 2023 Jun; 521():31-43. PubMed ID: 37085005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GluR2 deficiency accelerates motor neuron degeneration in a mouse model of amyotrophic lateral sclerosis.
    Van Damme P; Braeken D; Callewaert G; Robberecht W; Van Den Bosch L
    J Neuropathol Exp Neurol; 2005 Jul; 64(7):605-12. PubMed ID: 16042312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfering with lysophosphatidic acid receptor edg2/lpa
    Gento-Caro Á; Vilches-Herrando E; García-Morales V; Portillo F; Rodríguez-Bey G; González-Forero D; Moreno-López B
    Neuropathol Appl Neurobiol; 2021 Dec; 47(7):1004-1018. PubMed ID: 33508894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity.
    Zhao P; Ignacio S; Beattie EC; Abood ME
    Eur J Neurosci; 2008 Feb; 27(3):572-9. PubMed ID: 18279310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic GABAergic blockade in the spinal cord in vivo induces motor alterations and neurodegeneration.
    Ramírez-Jarquín UN; Tapia R
    Neuropharmacology; 2017 May; 117():85-92. PubMed ID: 28161374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depalmitoylation preferentially downregulates AMPA induced Ca2+ signaling and neurotoxicity in motor neurons.
    Krishnamurthy K; Mehta B; Singh M; Tewari BP; Joshi PG; Joshi NB
    Brain Res; 2013 Sep; 1529():143-53. PubMed ID: 23850769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of energy metabolic deficits and oxidative stress in excitotoxic spinal motor neuron degeneration in vivo.
    Santa-Cruz LD; Tapia R
    ASN Neuro; 2014 Mar; 6(2):. PubMed ID: 24524836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute neurotoxicant exposure induces hyperexcitability in mouse lumbar spinal motor neurons.
    Sceniak MP; Spitsbergen JB; Sabo SL; Yuan Y; Atchison WD
    J Neurophysiol; 2020 Apr; 123(4):1448-1459. PubMed ID: 32159428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VEGF protects spinal motor neurons against chronic excitotoxic degeneration in vivo by activation of PI3-K pathway and inhibition of p38MAPK.
    Tovar-Y-Romo LB; Tapia R
    J Neurochem; 2010 Dec; 115(5):1090-101. PubMed ID: 20456006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death.
    Ranno E; D'Antoni S; Spatuzza M; Berretta A; Laureanti F; Bonaccorso CM; Pellitteri R; Longone P; Spalloni A; Iyer AM; Aronica E; Catania MV
    Neurobiol Dis; 2014 May; 65():160-71. PubMed ID: 24423643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed administration of VEGF rescues spinal motor neurons from death with a short effective time frame in excitotoxic experimental models in vivo.
    Tovar-y-Romo LB; Tapia R
    ASN Neuro; 2012 Mar; 4(2):. PubMed ID: 22369757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.