These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37757532)
1. Assessing potential of the Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) for water quality monitoring across the coastal United States. Schaeffer BA; Whitman P; Vandermeulen R; Hu C; Mannino A; Salisbury J; Efremova B; Conmy R; Coffer M; Salls W; Ferriby H; Reynolds N Mar Pollut Bull; 2023 Nov; 196():115558. PubMed ID: 37757532 [TBL] [Abstract][Full Text] [Related]
2. Potential for commercial PlanetScope satellites in oil response monitoring. Schaeffer BA; Whitman P; Conmy R; Salls W; Coffer M; Graybill D; Lebrasse MC Mar Pollut Bull; 2022 Oct; 183():114077. PubMed ID: 36084611 [TBL] [Abstract][Full Text] [Related]
3. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison. Hu C; Barnes BB; Qi L; Corcoran AA Sensors (Basel); 2015 Jan; 15(2):2873-87. PubMed ID: 25635412 [TBL] [Abstract][Full Text] [Related]
4. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact. Khanna S; Santos MJ; Ustin SL; Shapiro K; Haverkamp PJ; Lay M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439504 [TBL] [Abstract][Full Text] [Related]
5. An affordable operational oil spill monitoring system in action: A diachronic multiplatform analysis of recent incidents in the southern Gulf of Mexico. Uribe-Martínez A; Espinoza-Tenorio A; Cruz-Pech JB; Cupido-Santamaría DG; Trujillo-Córdova JA; García-Nava H; Flores-Vidal X; Gudiño-Elizondo N; Herguera JC; Appendini CM; Cuevas E Environ Monit Assess; 2024 Oct; 196(11):1069. PubMed ID: 39419911 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
7. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
8. Karenia brevis bloom patterns on the west Florida shelf between 2003 and 2019: Integration of field and satellite observations. Hu C; Yao Y; Cannizzaro JP; Garrett M; Harper M; Markley L; Villac C; Hubbard K Harmful Algae; 2022 Aug; 117():102289. PubMed ID: 35944949 [TBL] [Abstract][Full Text] [Related]
9. Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States. Handler AM; Compton JE; Hill RA; Leibowitz SG; Schaeffer BA Sci Total Environ; 2023 Apr; 869():161784. PubMed ID: 36702268 [TBL] [Abstract][Full Text] [Related]
10. Utilizing deep learning algorithms for automated oil spill detection in medium resolution optical imagery. Sun Z; Yang Q; Yan N; Chen S; Zhu J; Zhao J; Sun S Mar Pollut Bull; 2024 Sep; 206():116777. PubMed ID: 39083910 [TBL] [Abstract][Full Text] [Related]
11. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea. Kim YH; Son S; Kim HC; Kim B; Park YG; Nam J; Ryu J Environ Int; 2020 Jan; 134():105301. PubMed ID: 31743805 [TBL] [Abstract][Full Text] [Related]
12. Characterization of surface oil thickness distribution patterns observed during the Deepwater Horizon (MC-252) oil spill with aerial and satellite remote sensing. Svejkovsky J; Hess M; Muskat J; Nedwed TJ; McCall J; Garcia O Mar Pollut Bull; 2016 Sep; 110(1):162-176. PubMed ID: 27389454 [TBL] [Abstract][Full Text] [Related]
13. Satellite-derived cyanobacteria frequency and magnitude in headwaters & near-dam reservoir surface waters of the Southern U.S. Ignatius AR; Purucker ST; Schaeffer BA; Wolfe K; Urquhart E; Smith D Sci Total Environ; 2022 May; 822():153568. PubMed ID: 35114225 [TBL] [Abstract][Full Text] [Related]
14. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Sun S; Hu C; Tunnell JW Mar Pollut Bull; 2015 Dec; 101(2):632-41. PubMed ID: 26507512 [TBL] [Abstract][Full Text] [Related]
17. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico. Qi L; Hu C; Barnes BB; Lee Z Harmful Algae; 2017 Jun; 66():40-46. PubMed ID: 28602252 [TBL] [Abstract][Full Text] [Related]
18. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Anderson DM; Fensin E; Gobler CJ; Hoeglund AE; Hubbard KA; Kulis DM; Landsberg JH; Lefebvre KA; Provoost P; Richlen ML; Smith JL; Solow AR; Trainer VL Harmful Algae; 2021 Feb; 102():101975. PubMed ID: 33875183 [TBL] [Abstract][Full Text] [Related]
19. Application of C-band sentinel-1A SAR data as proxies for detecting oil spills of Chennai, East Coast of India. Dasari K; Anjaneyulu L; Nadimikeri J Mar Pollut Bull; 2022 Jan; 174():113182. PubMed ID: 34844147 [TBL] [Abstract][Full Text] [Related]
20. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]