BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 37757568)

  • 1. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology?
    De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling coronary flows: impact of differently measured inflow boundary conditions on vessel-specific computational hemodynamic profiles.
    Lodi Rizzini M; Candreva A; Chiastra C; Gallinoro E; Calò K; D'Ascenzo F; De Bruyne B; Mizukami T; Collet C; Gallo D; Morbiducci U
    Comput Methods Programs Biomed; 2022 Jun; 221():106882. PubMed ID: 35597205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis.
    Liu H; Lan L; Abrigo J; Ip HL; Soo Y; Zheng D; Wong KS; Wang D; Shi L; Leung TW; Leng X
    Front Physiol; 2021; 12():718540. PubMed ID: 34552505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements.
    Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M
    Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D
    Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.
    Khan MO; Steinman DA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach to blood rheological uncertainties in aortic hemodynamics.
    Ranftl S; Müller TS; Windberger U; Brenn G; von der Linden W
    Int J Numer Method Biomed Eng; 2023 Apr; 39(4):e3576. PubMed ID: 35099851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different Blood Flow Models in Coronary Artery Diseases: Effects on hemodynamic parameters.
    Gaudio LT; Caruso MV; De Rosa S; Indolfi C; Fragomeni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3185-3188. PubMed ID: 30441071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relevance of boundary conditions and viscosity models in blood flow simulations in patient-specific aorto-coronary bypass models.
    Jonášová A; Vimmr J
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3439. PubMed ID: 33464717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model.
    Faraji A; Sahebi M; SalavatiDezfouli S
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation.
    Morbiducci U; Gallo D; Massai D; Ponzini R; Deriu MA; Antiga L; Redaelli A; Montevecchi FM
    J Biomech; 2011 Sep; 44(13):2427-38. PubMed ID: 21752380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.
    Smith S; Austin S; Wesson GD; Moore CA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():871-4. PubMed ID: 17945604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.