These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 37757814)

  • 41. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D bioprinting and the current applications in tissue engineering.
    Huang Y; Zhang XF; Gao G; Yonezawa T; Cui X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28675678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 4D bioprinting of programmed dynamic tissues.
    Lai J; Liu Y; Lu G; Yung P; Wang X; Tuan RS; Li ZA
    Bioact Mater; 2024 Jul; 37():348-377. PubMed ID: 38694766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector.
    Zhou W; Qiao Z; Nazarzadeh Zare E; Huang J; Zheng X; Sun X; Shao M; Wang H; Wang X; Chen D; Zheng J; Fang S; Li YM; Zhang X; Yang L; Makvandi P; Wu A
    J Med Chem; 2020 Aug; 63(15):8003-8024. PubMed ID: 32255358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional printing: The potential technology widely used in medical fields.
    Li H; Fan W; Zhu X
    J Biomed Mater Res A; 2020 Nov; 108(11):2217-2229. PubMed ID: 32363725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomaterials Based on Marine Resources for 3D Bioprinting Applications.
    Zhang Y; Zhou D; Chen J; Zhang X; Li X; Zhao W; Xu T
    Mar Drugs; 2019 Sep; 17(10):. PubMed ID: 31569366
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges.
    Zhao T; Liu Y; Wu Y; Zhao M; Zhao Y
    Biotechnol Adv; 2023 Dec; 69():108243. PubMed ID: 37647974
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in Regenerative Medicine and Biomaterials.
    Şeker Ş; Elçin AE; Elçin YM
    Methods Mol Biol; 2023; 2575():127-152. PubMed ID: 36301474
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 4D Biofabrication: Materials, Methods, and Applications.
    Ionov L
    Adv Healthc Mater; 2018 Sep; 7(17):e1800412. PubMed ID: 29978564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methods for biomaterials printing: A short review and perspective.
    Shokrani H; Shokrani A; Saeb MR
    Methods; 2022 Oct; 206():1-7. PubMed ID: 35917856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics.
    Größbacher G; Bartolf-Kopp M; Gergely C; Bernal PN; Florczak S; de Ruijter M; Rodriguez NG; Groll J; Malda J; Jungst T; Levato R
    Adv Mater; 2023 Aug; 35(32):e2300756. PubMed ID: 37099802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease.
    Salih T; Caputo M; Ghorbel MT
    Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering].
    Yang Z; Li C; Sun H
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):141-6. PubMed ID: 27273987
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.
    Lapomarda A; Cerqueni G; Geven MA; Chiesa I; De Acutis A; De Blasi M; Montemurro F; De Maria C; Mattioli-Belmonte M; Vozzi G
    Macromol Biosci; 2021 Sep; 21(9):e2100168. PubMed ID: 34173326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.