These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37758233)
1. Electrochemical Synthesis of Unnatural Amino Acids via Anodic Decarboxylation of Koleda O; Prane K; Suna E Org Lett; 2023 Nov; 25(44):7958-7962. PubMed ID: 37758233 [TBL] [Abstract][Full Text] [Related]
2. A direct entry to polycyclic quinoxaline derivatives Samanta SK; Sarkar R; Sengupta U; Das S; Ganguly D; Hasija A; Chopra D; Bera MK Org Biomol Chem; 2022 Jun; 20(22):4650-4658. PubMed ID: 35612282 [TBL] [Abstract][Full Text] [Related]
3. Cubane Electrochemistry: Direct Conversion of Cubane Carboxylic Acids to Alkoxy Cubanes Using the Hofer-Moest Reaction under Flow Conditions. Collin DE; Folgueiras-Amador AA; Pletcher D; Light ME; Linclau B; Brown RCD Chemistry; 2020 Jan; 26(2):374-378. PubMed ID: 31593312 [TBL] [Abstract][Full Text] [Related]
4. A stereoselective cyclization strategy for the preparation of γ-lactams and their use in the synthesis of α-methyl-β-proline. Banerjee S; Smith J; Smith J; Faulkner C; Masterson DS J Org Chem; 2012 Dec; 77(23):10925-30. PubMed ID: 23126540 [TBL] [Abstract][Full Text] [Related]
5. The Hofer-Moest decarboxylation of D-glucuronic acid and D-glucuronosides. Stapley JA; Bemiller JN Carbohydr Res; 2007 Feb; 342(3-4):610-3. PubMed ID: 17229411 [TBL] [Abstract][Full Text] [Related]
6. Electrosynthesis Using Carboxylic Acid Derivatives: New Tricks for Old Reactions. Leech MC; Lam K Acc Chem Res; 2020 Jan; 53(1):121-134. PubMed ID: 31895535 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Decarboxylative Cyclization of α-Amino-Oxy Acids to Access Phenanthridine Derivatives. Zhan Y; Dai C; Zhu Z; Liu P; Sun P Chem Asian J; 2022 Mar; 17(6):e202101388. PubMed ID: 35043595 [TBL] [Abstract][Full Text] [Related]
8. Access to Unnatural α-Amino Acids via Visible-Light-Mediated Decarboxylative Conjugate Addition to Dehydroalanine. Shah AA; Kelly MJ; Perkins JJ Org Lett; 2020 Mar; 22(6):2196-2200. PubMed ID: 32109071 [TBL] [Abstract][Full Text] [Related]
9. Photoinduced Kochi Decarboxylative Elimination for the Synthesis of Enamides and Enecarbamates from N-Acyl Amino Acids. Cartwright KC; Lang SB; Tunge JA J Org Chem; 2019 Mar; 84(5):2933-2940. PubMed ID: 30785754 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Oxidative Decarboxylation of Malonic Acid Derivatives: A Method for the Synthesis of Ketals and Ketones. Ma X; Luo X; Dochain S; Mathot C; Markò IE Org Lett; 2015 Oct; 17(19):4690-3. PubMed ID: 26392322 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective Synthesis of Chromanones Bearing an α,α-Disubstituted α-Amino Acid Moiety via Decarboxylative Michael Reaction. Bojanowski J; Sieroń L; Albrecht A Molecules; 2019 Jul; 24(14):. PubMed ID: 31311096 [TBL] [Abstract][Full Text] [Related]
12. [Asymmetric Synthesis of Unnatural Amino Acid-containing Peptides via Direct Asymmetric Reaction of Peptidyl Compounds]. Inokuma T Yakugaku Zasshi; 2018; 138(11):1371-1379. PubMed ID: 30381645 [TBL] [Abstract][Full Text] [Related]
13. Stereoselective synthesis of nipecotic acid derivatives via palladium-catalyzed decarboxylative cyclization of gamma-methylidene-delta-valerolactones with imines. Shintani R; Murakami M; Hayashi T Org Lett; 2009 Jan; 11(2):457-9. PubMed ID: 19072063 [TBL] [Abstract][Full Text] [Related]
14. Scalable Electrochemical Decarboxylative Olefination Driven by Alternating Polarity. Garrido-Castro AF; Hioki Y; Kusumoto Y; Hayashi K; Griffin J; Harper KC; Kawamata Y; Baran PS Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202309157. PubMed ID: 37656907 [TBL] [Abstract][Full Text] [Related]
16. Nucleophile generation via decarboxylation: asymmetric construction of contiguous trisubstituted and quaternary stereocenters through a Cu(I)-catalyzed decarboxylative Mannich-type reaction. Yin L; Kanai M; Shibasaki M J Am Chem Soc; 2009 Jul; 131(28):9610-1. PubMed ID: 19555061 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic decarboxylative alkenylation of α-amino and α-hydroxy acid-derived redox active esters by NaI/PPh Wang YT; Fu MC; Zhao B; Shang R; Fu Y Chem Commun (Camb); 2020 Feb; 56(16):2495-2498. PubMed ID: 32003367 [TBL] [Abstract][Full Text] [Related]
18. Copper/DIPEA-catalyzed, aldehyde-induced tandem decarboxylation-coupling of natural α-amino acids and phosphites or secondary phosphine oxides. Yang D; Zhao D; Mao L; Wang L; Wang R J Org Chem; 2011 Aug; 76(15):6426-31. PubMed ID: 21718035 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of Unnatural α-Amino Acid Derivatives via Photoredox Activation of Inert C(sp Babawale F; Murugesan K; Narobe R; König B Org Lett; 2022 Jul; 24(26):4793-4797. PubMed ID: 35749614 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Diketones, Ketoesters, and Tetraketones by Electrochemical Oxidative Decarboxylation of Malonic Acid Derivatives: Application to the Synthesis of cis-Jasmone. Ma X; Dewez DF; Du L; Luo X; Markó IE; Lam K J Org Chem; 2018 Oct; 83(19):12044-12055. PubMed ID: 30208277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]