These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37758758)

  • 1. Preparation of high-performance supercapacitor electrode with nanocomposite of CuO/NCNO flower-like.
    Sohouli E; Teymourinia H; Ramazani A; Adib K
    Sci Rep; 2023 Sep; 13(1):16221. PubMed ID: 37758758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Cyclodextrin-Stabilized CuO/MXene Nanocomposite as an Electrode Material for High-Performance Supercapacitors.
    Rajeeve AD; Yamuna R; Vinoba M; Bhagiyalakshmi M
    Langmuir; 2023 Dec; 39(49):17688-17699. PubMed ID: 38014812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis and super capacitance performance of novel CuO@Cu
    Enaiet Allah A; Mohamed F; Ghanem MA; Ahmed AM
    RSC Adv; 2024 Apr; 14(19):13628-13639. PubMed ID: 38665496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.
    Harilal M; Vidyadharan B; Misnon II; Anilkumar GM; Lowe A; Ismail J; Yusoff MM; Jose R
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10730-10742. PubMed ID: 28266837
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Xu L; Li J; Sun H; Guo X; Xu J; Zhang H; Zhang X
    Front Chem; 2019; 7():420. PubMed ID: 31245357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the electrochemical performance of supercapacitor electrodes using as-synthesized CuO and MOF-derived CuO nanostructures.
    Noor U; Sherin P K R; Sharif A; Ahmed T; Rahman MU
    Nanotechnology; 2024 Aug; 35(45):. PubMed ID: 39121875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon.
    Gul H; Shah AA; Bilal S
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31615090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonication-assisted fabrication of hierarchical architectures of copper oxide/zinc antimonate nanocomposites based supercapacitor electrode materials.
    Balasubramaniam M; Balakumar S
    Ultrason Sonochem; 2019 Sep; 56():337-349. PubMed ID: 31101271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical analysis of asymmetric supercapacitors based on BiCoO
    Varatharajan P; Shameem Banu IB; Mamat MH; Vasimalai N
    Dalton Trans; 2023 Oct; 52(38):13704-13715. PubMed ID: 37706529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal synthesis of CuO@MnO
    Kakani V; Ramesh S; Yadav HM; Bathula C; Basivi PK; Palem RR; Kim HS; Pasupuletti VR; Lee H; Kim H
    Sci Rep; 2022 Sep; 12(1):12951. PubMed ID: 36127493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode.
    El Nady J; Shokry A; Khalil M; Ebrahim S; Elshaer AM; Anas M
    Sci Rep; 2022 Mar; 12(1):3611. PubMed ID: 35246573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.
    Ma G; Hua F; Sun K; Fenga E; Peng H; Zhang Z; Lei Z
    R Soc Open Sci; 2018 Jan; 5(1):171186. PubMed ID: 29410830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of chemically synthesized Mn
    Li Q; Li Y; Fulari AV; Ghodake GS; Kim DY; Lohar GM
    Nanotechnology; 2020 Oct; 31(41):415403. PubMed ID: 32575091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor.
    Shaheen I; Hussain I; Zahra T; Memon R; Alothman AA; Ouladsmane M; Qureshi A; Niazi JH
    Chemosphere; 2023 May; 322():138149. PubMed ID: 36804630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Synthesis and Electrochemical Characterization of Polyaniline@TiO
    Boutaleb N; Dahou FZ; Djelad H; Sabantina L; Moulefera I; Benyoucef A
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sandblasting and acid surface pretreatment on the specific capacitance of CuO nanostructures grown by hot water treatment for supercapacitor electrode applications.
    Haque S; Wang D; Ergul B; Basurrah A; Karabacak T
    Nanotechnology; 2024 May; 35(33):. PubMed ID: 38759634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of CuO/Cu-nanoflowers loaded on chitosan-derived porous carbon for high energy density supercapacitors.
    Xi Y; Xiao Z; Lv H; Sun H; Zhai S; An Q
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):525-534. PubMed ID: 36270173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuO nanorods grown vertically on graphene nanosheets as a battery-type material for high-performance supercapacitor electrodes.
    Zhai M; Li A; Hu J
    RSC Adv; 2020 Oct; 10(60):36554-36561. PubMed ID: 35517950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inside-outside OH
    Ali Ansari S; Parveen N; Al Saleh Al-Othoum M; Omaish Ansari M
    J Adv Res; 2023 Aug; 50():107-116. PubMed ID: 36280142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging of Kirkendall growth and Ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors.
    Huang M; Zhang Y; Li F; Wang Z; Alamusi ; Hu N; Wen Z; Liu Q
    Sci Rep; 2014 Mar; 4():4518. PubMed ID: 24682149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.