These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37758764)

  • 1. Combined optical line-of-sight and crosslink radiometric navigation for distributed deep-space systems.
    Casini S; Turan E; Cervone A; Monna B; Visser P
    Sci Rep; 2023 Sep; 13(1):16253. PubMed ID: 37758764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LONEStar: The Lunar Flashlight Optical Navigation Experiment.
    Krause M; Thrasher A; Soni P; Smego L; Isaac R; Nolan J; Pledger M; Lightsey EG; Ready WJ; Christian J
    J Astronaut Sci; 2024; 71(4):33. PubMed ID: 39021366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and testing of star tracker algorithms for autonomous optical line-of-sight deep-space navigation.
    Casini S; Cervone A; Monna B; Visser P
    Appl Opt; 2023 Aug; 62(22):5896-5909. PubMed ID: 37706941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-orbit calibration approach for optical navigation camera in deep space exploration.
    Wang M; Cheng Y; Yang B; Jin S; Su H
    Opt Express; 2016 Mar; 24(5):5536-5554. PubMed ID: 29092376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Deep Space Navigation Using Optical Imaging, Pulsar Time-of-Arrival Tracking, and/or Radiometric Tracking.
    Ely T; Bhaskaran S; Bradley N; Lazio TJW; Martin-Mur T
    J Astronaut Sci; 2022; 69(2):385-472. PubMed ID: 35578631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Deep Space Atomic Clock for Navigation and Science.
    Ely TA; Burt EA; Prestage JD; Seubert JM; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):950-961. PubMed ID: 29856712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations.
    Tang Y; Wang Y; Chen J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trusted Autonomous Operations of Distributed Satellite Systems Using Optical Sensors.
    Thangavel K; Spiller D; Sabatini R; Amici S; Longepe N; Servidia P; Marzocca P; Fayek H; Ansalone L
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust RANSAC-Based Planet Radius Estimation for Onboard Visual Based Navigation.
    de Gioia F; Meoni G; Giuffrida G; Donati M; Fanucci L
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Celestial Bodies Far-Range Detection with Deep-Space CubeSats.
    Franzese V; Topputo F
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StarNAV: Autonomous Optical Navigation of a Spacecraft by the Relativistic Perturbation of Starlight.
    Christian JA
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise Orbit Determination of MEX Flyby Phobos Using Simulated Radiometric and Image Data.
    Zhu X; Liu L; Liu S; Xie P; Gao W; Yan J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33429856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The TinyV3RSE Hardware-in-the-Loop Vision-Based Navigation Facility.
    Panicucci P; Topputo F
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Voyager Interstellar Mission.
    Rudd RP; Hall JC; Spradlin GL
    Acta Astronaut; 1997; 40(2-8):383-96. PubMed ID: 11540770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Submillimeter Level Relative Navigation Technology for Spacecraft Formation Flying in Highly Elliptical Orbit.
    Wang X; Gong D; Jiang Y; Mo Q; Kang Z; Shen Q; Wu S; Wang D
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architecture and performance analysis of an optical metrology terminal for satellite-to-satellite laser ranging.
    Mandel O; Sell A; Chwalla M; Schuldt T; Krauser J; Weise D; Braxmaier C
    Appl Opt; 2020 Jan; 59(3):653-661. PubMed ID: 32225191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-orbit demonstration of inter-satellite free-space optical stable communication enabled by integrated optical amplification of HPA and LNA.
    Bai Z; Meng J; Su Y; Zheng Y; Chang Z; Wei S; Gao D; Nie W; Meng X; Han J; Xue B; Zhang C; Wang W; Xie X
    Appl Opt; 2023 Aug; 62(23):G18-G25. PubMed ID: 37707059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standalone GPS L1 C/A Receiver for Lunar Missions.
    Capuano V; Blunt P; Botteron C; Tian J; Leclère J; Wang Y; Basile F; Farine PA
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27005628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility Analysis of LTE-Based UAS Navigation in Deep Urban Areas and DSRC Augmentation.
    Kim E; Shin Y
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.