These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37759050)

  • 1. Multiobjective optimization of membrane in hybrid cryogenic CO
    Yerumbu N; Sahoo RK; Sivalingam M
    Environ Sci Pollut Res Int; 2023 Oct; 30(50):108783-108801. PubMed ID: 37759050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxycoal process with cryogenic oxygen supply.
    Kather A; Scheffknecht G
    Naturwissenschaften; 2009 Sep; 96(9):993-1010. PubMed ID: 19495717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.
    Li K; Yu H; Feron P; Tade M; Wardhaugh L
    Environ Sci Technol; 2015 Aug; 49(16):10243-52. PubMed ID: 26208135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
    Gadalla MA; Olujic Z; Jansens PJ; Jobson M; Smith R
    Environ Sci Technol; 2005 Sep; 39(17):6860-70. PubMed ID: 16190250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology.
    Bhui B; Vairakannu P
    J Environ Manage; 2019 Feb; 231():1241-1256. PubMed ID: 30602249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
    Supekar SD; Skerlos SJ
    Environ Sci Technol; 2015 Oct; 49(20):12576-84. PubMed ID: 26422409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-combustion CO
    Akeeb O; Wang L; Xie W; Davis R; Alkasrawi M; Toan S
    J Environ Manage; 2022 Jul; 313():115026. PubMed ID: 35405546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.
    Ağralı S; Üçtuğ FG; Türkmen BA
    J Environ Manage; 2018 Jun; 215():305-315. PubMed ID: 29574208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techno-Economic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal Oxy-Fired Circulating Fluidized Bed Power Plant.
    Portillo E; Gallego Fernández LM; Cano M; Alonso-Fariñas B; Navarrete B
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving sustainable emissions in China: Techno-economic analysis of post-combustion carbon capture unit retrofitted to WTE plants.
    Boré A; Dziva G; Chu C; Huang Z; Liu X; Qin S; Ma W
    J Environ Manage; 2024 Jan; 349():119280. PubMed ID: 37897897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the Membrane Process of CO
    Miroshnichenko D; Shalygin M; Bazhenov S
    Membranes (Basel); 2023 Jul; 13(8):. PubMed ID: 37623753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Zero/Negative-Emissions Coal-Fired Power Plants Using Amine-Based Postcombustion CO
    Jiang K; Feron P; Cousins A; Zhai R; Li K
    Environ Sci Technol; 2020 Feb; 54(4):2429-2438. PubMed ID: 31990528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant.
    Yahya L; Harun R; Abdullah LC
    Sci Rep; 2020 Dec; 10(1):22355. PubMed ID: 33339883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.
    Talati S; Zhai H; Morgan MG
    Environ Sci Technol; 2014 Oct; 48(20):11769-76. PubMed ID: 25229670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decision analysis model for reducing carbon emission from coal-fired power plants and its compensatory units.
    Kumari S; Bera S
    J Environ Manage; 2022 Jan; 301():113829. PubMed ID: 34592669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.
    Lee DW; Bae JS; Lee YJ; Park SJ; Hong JC; Lee BH; Jeon CH; Choi YC
    Environ Sci Technol; 2013 Feb; 47(3):1704-10. PubMed ID: 23286316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of technical inefficiency in China's coal-fired power plants and policy recommendations for CO
    Nakaishi T; Kagawa S; Takayabu H; Lin C
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):52064-52081. PubMed ID: 34002311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of particle emissions and their atmospheric dilution during co-combustion of coal and wood pellets in a large combined heat and power plant.
    Mylläri F; Pirjola L; Lihavainen H; Asmi E; Saukko E; Laurila T; Vakkari V; O'Connor E; Rautiainen J; Häyrinen A; Niemelä V; Maunula J; Hillamo R; Keskinen J; Rönkkö T
    J Air Waste Manag Assoc; 2019 Jan; 69(1):97-108. PubMed ID: 30204539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.