BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 37759803)

  • 1. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes.
    Naithani S; Deng CH; Sahu SK; Jaiswal P
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato.
    Zsögön A; Cermak T; Voytas D; Peres LE
    Plant Sci; 2017 Mar; 256():120-130. PubMed ID: 28167025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop adaptation to climate change: An evolutionary perspective.
    Gao L; Kantar MB; Moxley D; Ortiz-Barrientos D; Rieseberg LH
    Mol Plant; 2023 Oct; 16(10):1518-1546. PubMed ID: 37515323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars.
    Yu J; Golicz AA; Lu K; Dossa K; Zhang Y; Chen J; Wang L; You J; Fan D; Edwards D; Zhang X
    Plant Biotechnol J; 2019 May; 17(5):881-892. PubMed ID: 30315621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Razzaq A; Saleem F; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Alkallas FH; Tamam N; Elansary HO
    Front Plant Sci; 2021; 12():681367. PubMed ID: 34603347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective and comparative genome architecture of Asian cultivated rice (Oryza sativa L.) attributed to domestication and modern breeding.
    Wang X; Wang W; Tai S; Li M; Gao Q; Hu Z; Hu W; Wu Z; Zhu X; Xie J; Li F; Zhang Z; Zhi L; Zhang F; Ma X; Yang M; Xu J; Li Y; Zhang W; Yang X; Chen Y; Zhao Y; Fu B; Zhao X; Li J; Wang M; Yue Z; Fang X; Zeng W; Yin Y; Zhang G; Xu J; Zhang H; Li Z; Li Z
    J Adv Res; 2022 Dec; 42():1-16. PubMed ID: 35988902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chickpea genetic variation map based on the sequencing of 3,366 genomes.
    Varshney RK; Roorkiwal M; Sun S; Bajaj P; Chitikineni A; Thudi M; Singh NP; Du X; Upadhyaya HD; Khan AW; Wang Y; Garg V; Fan G; Cowling WA; Crossa J; Gentzbittel L; Voss-Fels KP; Valluri VK; Sinha P; Singh VK; Ben C; Rathore A; Punna R; Singh MK; Tar'an B; Bharadwaj C; Yasin M; Pithia MS; Singh S; Soren KR; Kudapa H; Jarquín D; Cubry P; Hickey LT; Dixit GP; Thuillet AC; Hamwieh A; Kumar S; Deokar AA; Chaturvedi SK; Francis A; Howard R; Chattopadhyay D; Edwards D; Lyons E; Vigouroux Y; Hayes BJ; von Wettberg E; Datta SK; Yang H; Nguyen HT; Wang J; Siddique KHM; Mohapatra T; Bennetzen JL; Xu X; Liu X
    Nature; 2021 Nov; 599(7886):622-627. PubMed ID: 34759320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops.
    Rogo U; Simoni S; Fambrini M; Giordani T; Pugliesi C; Mascagni F
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38397047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant pan-genomics: recent advances, new challenges, and roads ahead.
    Li W; Liu J; Zhang H; Liu Z; Wang Y; Xing L; He Q; Du H
    J Genet Genomics; 2022 Sep; 49(9):833-846. PubMed ID: 35750315
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Jian LM; Xiao YJ; Yan JB
    Yi Chuan; 2023 Sep; 45(9):741-753. PubMed ID: 37731229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing.
    Kumar K; Mandal SN; Pradhan B; Kaur P; Kaur K; Neelam K
    Plant Cell Physiol; 2022 Nov; 63(11):1607-1623. PubMed ID: 36018059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring crop genomes: assembly features, gene prediction accuracy, and implications for proteomics studies.
    Abbas Q; Wilhelm M; Kuster B; Poppenberger B; Frishman D
    BMC Genomics; 2024 Jun; 25(1):619. PubMed ID: 38898442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.