These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 37759803)

  • 21. Ancient genomes reveal early Andean farmers selected common beans while preserving diversity.
    Trucchi E; Benazzo A; Lari M; Iob A; Vai S; Nanni L; Bellucci E; Bitocchi E; Raffini F; Xu C; Jackson SA; Lema V; Babot P; Oliszewski N; Gil A; Neme G; Michieli CT; De Lorenzi M; Calcagnile L; Caramelli D; Star B; de Boer H; Boessenkool S; Papa R; Bertorelle G
    Nat Plants; 2021 Feb; 7(2):123-128. PubMed ID: 33558754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Population comparative genomics discovers gene gain and loss during grapevine domestication.
    Long Q; Cao S; Huang G; Wang X; Liu Z; Liu W; Wang Y; Xiao H; Peng Y; Zhou Y
    Plant Physiol; 2024 May; 195(2):1401-1413. PubMed ID: 38285049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patterns of genomic changes with crop domestication and breeding.
    Shi J; Lai J
    Curr Opin Plant Biol; 2015 Apr; 24():47-53. PubMed ID: 25656221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Editing and Designer Crops for the Future.
    Rana S; Aggarwal PR; Shukla V; Giri U; Verma S; Muthamilarasan M
    Methods Mol Biol; 2022; 2408():37-69. PubMed ID: 35325415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Back to the Origins: Background and Perspectives of Grapevine Domestication.
    Grassi F; De Lorenzis G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontiers of soybean pan-genome studies.
    Liu YC; Shen YT; Tian ZX
    Yi Chuan; 2024 Mar; 46(3):183-198. PubMed ID: 38632097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oil plant genomes: current state of the science.
    Song JM; Zhang Y; Zhou ZW; Lu S; Ma W; Lu C; Chen LL; Guo L
    J Exp Bot; 2022 May; 73(9):2859-2874. PubMed ID: 35560205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Twenty years of plant genome sequencing: achievements and challenges.
    Sun Y; Shang L; Zhu QH; Fan L; Guo L
    Trends Plant Sci; 2022 Apr; 27(4):391-401. PubMed ID: 34782248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat.
    Adamski NM; Borrill P; Brinton J; Harrington SA; Marchal C; Bentley AR; Bovill WD; Cattivelli L; Cockram J; Contreras-Moreira B; Ford B; Ghosh S; Harwood W; Hassani-Pak K; Hayta S; Hickey LT; Kanyuka K; King J; Maccaferrri M; Naamati G; Pozniak CJ; Ramirez-Gonzalez RH; Sansaloni C; Trevaskis B; Wingen LU; Wulff BB; Uauy C
    Elife; 2020 Mar; 9():. PubMed ID: 32208137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The integrated genomics of crop domestication and breeding.
    Huang X; Huang S; Han B; Li J
    Cell; 2022 Jul; 185(15):2828-2839. PubMed ID: 35643084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic approaches for studying crop evolution.
    Schreiber M; Stein N; Mascher M
    Genome Biol; 2018 Sep; 19(1):140. PubMed ID: 30241487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.
    Dwivedi SL; Scheben A; Edwards D; Spillane C; Ortiz R
    Front Plant Sci; 2017; 8():1461. PubMed ID: 28900432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Cereal Crop Genomics for Resilience under Climate Change.
    Zenda T; Liu S; Dong A; Duan H
    Life (Basel); 2021 May; 11(6):. PubMed ID: 34072447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [De novo domestication to create new crops].
    Yang XP; Yu A; Xu C
    Yi Chuan; 2019 Sep; 41(9):827-835. PubMed ID: 31549681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.
    Zhao Q; Feng Q; Lu H; Li Y; Wang A; Tian Q; Zhan Q; Lu Y; Zhang L; Huang T; Wang Y; Fan D; Zhao Y; Wang Z; Zhou C; Chen J; Zhu C; Li W; Weng Q; Xu Q; Wang ZX; Wei X; Han B; Huang X
    Nat Genet; 2018 Feb; 50(2):278-284. PubMed ID: 29335547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deleterious mutations are characterized by higher genomic heterozygosity than other genic variants in plant genomes.
    Zhu M; Cheng Y; Wu S; Huang X; Qiu J
    Genomics; 2022 Mar; 114(2):110290. PubMed ID: 35124173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.