These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 37759917)

  • 1. From Brain Models to Robotic Embodied Cognition: How Does Biological Plausibility Inform Neuromorphic Systems?
    Pham MD; D'Angiulli A; Dehnavi MM; Chhabra R
    Brain Sci; 2023 Sep; 13(9):. PubMed ID: 37759917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks.
    Bing Z; Meschede C; Röhrbein F; Huang K; Knoll AC
    Front Neurorobot; 2018; 12():35. PubMed ID: 30034334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic computing hardware and neural architectures for robotics.
    Sandamirskaya Y; Kaboli M; Conradt J; Celikel T
    Sci Robot; 2022 Jun; 7(67):eabl8419. PubMed ID: 35767646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BiCoSS: Toward Large-Scale Cognition Brain With Multigranular Neuromorphic Architecture.
    Yang S; Wang J; Hao X; Li H; Wei X; Deng B; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2801-2815. PubMed ID: 33428574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHIP: a computational framework for simulating and validating novel technologies in hardware spiking neural networks.
    Gemo E; Spiga S; Brivio S
    Front Neurosci; 2023; 17():1270090. PubMed ID: 38264497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automotive Radar Processing With Spiking Neural Networks: Concepts and Challenges.
    Vogginger B; Kreutz F; López-Randulfe J; Liu C; Dietrich R; Gonzalez HA; Scholz D; Reeb N; Auge D; Hille J; Arsalan M; Mirus F; Grassmann C; Knoll A; Mayr C
    Front Neurosci; 2022; 16():851774. PubMed ID: 35431782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting noise as a resource for computation and learning in spiking neural networks.
    Ma G; Yan R; Tang H
    Patterns (N Y); 2023 Oct; 4(10):100831. PubMed ID: 37876899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient automated parameter tuning framework for spiking neural networks.
    Carlson KD; Nageswaran JM; Dutt N; Krichmar JL
    Front Neurosci; 2014; 8():10. PubMed ID: 24550771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and generalizable cross-patient epileptic seizure detection through a spiking neural network.
    Zhang Z; Xiao M; Ji T; Jiang Y; Lin T; Zhou X; Lin Z
    Front Neurosci; 2023; 17():1303564. PubMed ID: 38268711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a Brain-Neuromorphics Interface.
    Wan C; Pei M; Shi K; Cui H; Long H; Qiao L; Xing Q; Wan Q
    Adv Mater; 2024 Feb; ():e2311288. PubMed ID: 38339866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.