These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37760091)

  • 1. Colorants and Antioxidants Deriving from Methylglyoxal and Heterocyclic Maillard Reaction Intermediates.
    Bork LV; Baumann M; Stobernack T; Rohn S; Kanzler C
    Antioxidants (Basel); 2023 Sep; 12(9):. PubMed ID: 37760091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of polar melanoidins deriving from Maillard reaction intermediates - A model approach.
    Bork LV; Haase PT; Rohn S; Kanzler C
    Food Chem; 2022 Nov; 395():133592. PubMed ID: 35810628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Browning reactions of hydroxycinnamic acids and heterocyclic Maillard reaction intermediates - Formation of phenol-containing colorants.
    Bork LV; Stobernack T; Rohn S; Kanzler C
    Food Chem; 2024 Aug; 449():139189. PubMed ID: 38593726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Hydroxycinnamic Acids to Color Formation in Nonenzymatic Browning Reactions with Key Maillard Reaction Intermediates.
    Bork LV; Proksch N; Rohn S; Kanzler C
    J Agric Food Chem; 2024 Jan; 72(3):1708-1720. PubMed ID: 38224245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of melanoidins - Aldol reactions of heterocyclic and short-chain Maillard intermediates.
    Bork LV; Haase PT; Rohn S; Kanzler C
    Food Chem; 2022 Jun; 380():131852. PubMed ID: 34998624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanoidins Formed by Heterocyclic Maillard Reaction Intermediates via Aldol Reaction and Michael Addition.
    Kanzler C; Haase PT
    J Agric Food Chem; 2020 Jan; 68(1):332-339. PubMed ID: 31814399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Hydroxycinnamic Acids on the Maillard Reaction of Arabinose and Galactose beyond Carbonyl-Trapping.
    Bork LV; Proksch N; Stobernack T; Rohn S; Kanzler C
    J Agric Food Chem; 2024 Jul; ():. PubMed ID: 38968025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the browning reaction in a sorbitol/glycine model: Formation and degradation of precursors, glucose and α-dicarbonyl compounds during heating.
    Huang X; Feng T; Cui H; Xia S; Zhu H
    Food Res Int; 2024 Feb; 177():113870. PubMed ID: 38225137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the non-enzymatic browning of lotus rhizome juice during sterilization mediated by 1,2-dicarboxyl and heterocyclic compounds.
    Sun X; Li J; Yan S
    J Sci Food Agric; 2024 Jan; 104(1):362-372. PubMed ID: 37598410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Browning of Maillard reaction systems containing xylose and 4-hydroxy-5-methyl-3(2H)-furanone.
    Nakamura M; Mikami Y; Noda K; Murata M
    Biosci Biotechnol Biochem; 2021 Feb; 85(2):401-410. PubMed ID: 33604624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production.
    Hong PK; Betti M
    Food Chem; 2016 Dec; 212():234-43. PubMed ID: 27374528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties.
    Shakoor A; Zhang C; Xie J; Yang X
    Food Chem; 2022 Nov; 393():133416. PubMed ID: 35696950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Mass Spectrometry Analysis of Melanoidins and Their Precursors Formed in a Model Study of the Maillard Reaction of Methylglyoxal with l-Alanine or l-Lysine.
    Kanzler C; Wustrack F; Rohn S
    J Agric Food Chem; 2021 Oct; 69(40):11960-11970. PubMed ID: 34591478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring polymerisation of methylglyoxal with NH
    Wang Z; Zhao Y; Wang D; Zhang X; Xia M; Xia T; Zheng Y; Wang M
    Food Chem; 2022 Nov; 394():133472. PubMed ID: 35716504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to d-Glucose.
    Kanzler C; Schestkowa H; Haase PT; Kroh LW
    J Agric Food Chem; 2017 Oct; 65(40):8957-8965. PubMed ID: 28880081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.
    Xu H; Zhang X; Karangwa E; Xia S
    J Sci Food Agric; 2017 Sep; 97(12):4210-4218. PubMed ID: 28244161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Colorants Formed by Non-Enzymatic Browning Reactions of Hydroxycinnamic Acid Derivatives.
    Bork LV; Rohn S; Kanzler C
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Colored Maillard Peptides: Formation from Reduced Fluorescent Precursors of Browning and Enhancement of Saltiness Perception.
    Zhang Y; Yao Y; Zhou T; Zhang F; Xia X; Yu J; Song S; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Dec; 71(50):20251-20259. PubMed ID: 38060299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.