BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37760168)

  • 21. A novel approach to the quantification of aortic root in vivo structural mechanics.
    Votta E; Presicce M; Della Corte A; Dellegrottaglie S; Bancone C; Sturla F; Redaelli A
    Int J Numer Method Biomed Eng; 2017 Sep; 33(9):. PubMed ID: 28029755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep convolutional neural network for hippocampus segmentation with boundary region refinement.
    He G; Zhang G; Zhou L; Zhu H
    Med Biol Eng Comput; 2023 Sep; 61(9):2329-2339. PubMed ID: 37067776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the prospect of patient-specific biomechanics without patient-specific properties of tissues.
    Miller K; Lu J
    J Mech Behav Biomed Mater; 2013 Nov; 27():154-66. PubMed ID: 23491073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations.
    Tac V; Sahli Costabal F; Tepole AB
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 38045634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates.
    Gruber N; Galijasevic M; Regodic M; Grams AE; Siedentopf C; Steiger R; Hammerl M; Haltmeier M; Gizewski ER; Janjic T
    Artif Intell Med; 2022 Oct; 132():102384. PubMed ID: 36207089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in computational mechanics of the human knee joint.
    Kazemi M; Dabiri Y; Li LP
    Comput Math Methods Med; 2013; 2013():718423. PubMed ID: 23509602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach.
    Linder-Ganz E; Shabshin N; Itzchak Y; Gefen A
    J Biomech; 2007; 40(7):1443-54. PubMed ID: 16920122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled experimental and computational approach to stomach biomechanics: Towards a validated characterization of gastric tissues mechanical properties.
    Toniolo I; Fontanella CG; Foletto M; Carniel EL
    J Mech Behav Biomed Mater; 2022 Jan; 125():104914. PubMed ID: 34715641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.
    Erdemir A; Bennetts C; Davis S; Reddy A; Sibole S
    Interface Focus; 2015 Apr; 5(2):20140081. PubMed ID: 25844153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey.
    Zadeh Shirazi A; Fornaciari E; McDonnell MD; Yaghoobi M; Cevallos Y; Tello-Oquendo L; Inca D; Gomez GA
    J Pers Med; 2020 Nov; 10(4):. PubMed ID: 33198332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Computational Framework for Atrioventricular Valve Modeling Using Open-Source Software.
    Wu W; Ching S; Maas SA; Lasso A; Sabin P; Weiss JA; Jolley MA
    J Biomech Eng; 2022 Oct; 144(10):. PubMed ID: 35510823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta.
    Liang L; Mao W; Sun W
    J Biomech; 2020 Jan; 99():109544. PubMed ID: 31806261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive meshing technique applied to an orthopaedic finite element contact problem.
    Roarty CM; Grosland NM
    Iowa Orthop J; 2004; 24():21-9. PubMed ID: 15296201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Implementation of Patient-Specific Biventricular Mechanics Simulations With a Deep Learning and Computational Pipeline.
    Miller R; Kerfoot E; Mauger C; Ismail TF; Young AA; Nordsletten DA
    Front Physiol; 2021; 12():716597. PubMed ID: 34603077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
    Alber M; Buganza Tepole A; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    NPJ Digit Med; 2019; 2():115. PubMed ID: 31799423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Democratization of deep learning for segmenting cartilage from MRIs of human knees: Application to data from the osteoarthritis initiative.
    Rodriguez-Vila B; Gonzalez-Hospital V; Puertas E; Beunza JJ; Pierce DM
    J Orthop Res; 2023 Aug; 41(8):1754-1766. PubMed ID: 36573479
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.