These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37760168)

  • 41. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm.
    Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA
    J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye.
    Karimi A; Rahmati SM; Grytz RG; Girkin CA; Downs JC
    Acta Biomater; 2021 Oct; 134():357-378. PubMed ID: 34245889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials.
    Zhang W; Capilnasiu A; Sommer G; Holzapfel GA; Nordsletten DA
    Comput Methods Appl Mech Eng; 2020 Apr; 362():. PubMed ID: 34136022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural network-based left ventricle geometry prediction from CMR images with application in biomechanics.
    Romaszko L; Borowska A; Lazarus A; Dalton D; Berry C; Luo X; Husmeier D; Gao H
    Artif Intell Med; 2021 Sep; 119():102140. PubMed ID: 34531009
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.
    Wang F; Han Y; Wang B; Peng Q; Huang X; Miller K; Wittek A
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1165-1185. PubMed ID: 29754317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
    Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC
    Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Osteoarthritis year in review 2016: mechanics.
    Saxby DJ; Lloyd DG
    Osteoarthritis Cartilage; 2017 Feb; 25(2):190-198. PubMed ID: 28100420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Clinical applications of graph neural networks in computational histopathology: A review.
    Meng X; Zou T
    Comput Biol Med; 2023 Sep; 164():107201. PubMed ID: 37517325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications of Finite Element Modeling in Biomechanical Analysis of Foot Arch Deformation: A Scoping Review.
    Cen X; Song Y; Sun D; Bíró I; Gu Y
    J Biomech Eng; 2023 Jul; 145(7):. PubMed ID: 37043259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques.
    Zheng M; Zou Z; Bartolo PJ; Peach C; Ren L
    Int J Numer Method Biomed Eng; 2017 Feb; 33(2):. PubMed ID: 26891250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method.
    Caron R; Londono I; Seoud L; Villemure I
    J Mech Behav Biomed Mater; 2023 Jan; 137():105540. PubMed ID: 36327650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.