These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37760184)

  • 1. Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot.
    Son CS; Kang WS
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Continuous Locomotion Mode Recognition and Transition Prediction for Human With Lower Limb Exoskeleton.
    Ma X; Liu Y; Zhang X; Masia L; Song Q
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39288043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton.
    Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X
    PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living.
    Mohamed SA; Martinez-Hernandez U
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StairNet: visual recognition of stairs for human-robot locomotion.
    Kurbis AG; Kuzmenko D; Ivanyuk-Skulskiy B; Mihailidis A; Laschowski B
    Biomed Eng Online; 2024 Feb; 23(1):20. PubMed ID: 38360664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices.
    Muniasamy A
    Technol Health Care; 2024 Aug; ():. PubMed ID: 39269866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking.
    Haghi M; Ershadi A; Deserno TM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusion of Human Gaze and Machine Vision for Predicting Intended Locomotion Mode.
    Li M; Zhong B; Lobaton E; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1103-1112. PubMed ID: 35442889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Iontronic FMG for Classification of Muscular Locomotion.
    Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.
    Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.