These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 37760334)
1. PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks. Wang J; Zhang H; Chen N; Zeng T; Ai X; Wu K Animals (Basel); 2023 Sep; 13(18):. PubMed ID: 37760334 [TBL] [Abstract][Full Text] [Related]
2. ADH-Enhancer: an attention-based deep hybrid framework for enhancer identification and strength prediction. Mehmood F; Arshad S; Shoaib M Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385876 [TBL] [Abstract][Full Text] [Related]
3. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences. Gao Y; Chen Y; Feng H; Zhang Y; Yue Z Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950 [TBL] [Abstract][Full Text] [Related]
4. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers. Chen S; Gan M; Lv H; Jiang R Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335 [TBL] [Abstract][Full Text] [Related]
5. A deep learning framework for enhancer prediction using word embedding and sequence generation. Geng Q; Yang R; Zhang L Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495 [TBL] [Abstract][Full Text] [Related]
6. DEEPSEN: a convolutional neural network based method for super-enhancer prediction. Bu H; Hao J; Gan Y; Zhou S; Guan J BMC Bioinformatics; 2019 Dec; 20(Suppl 15):598. PubMed ID: 31874597 [TBL] [Abstract][Full Text] [Related]
7. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network. Zeng W; Wang Y; Jiang R Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408 [TBL] [Abstract][Full Text] [Related]
8. Predicting enhancers with deep convolutional neural networks. Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework. Wang Y; Hou Z; Yang Y; Wong KC; Li X PLoS Comput Biol; 2022 Dec; 18(12):e1010779. PubMed ID: 36520922 [TBL] [Abstract][Full Text] [Related]
10. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Yang R; Wu F; Zhang C; Zhang L Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317 [TBL] [Abstract][Full Text] [Related]
11. iEnhancer-ECNN: identifying enhancers and their strength using ensembles of convolutional neural networks. Nguyen QH; Nguyen-Vo TH; Le NQK; Do TTT; Rahardja S; Nguyen BP BMC Genomics; 2019 Dec; 20(Suppl 9):951. PubMed ID: 31874637 [TBL] [Abstract][Full Text] [Related]
12. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187 [TBL] [Abstract][Full Text] [Related]
13. ES-ARCNN: Predicting enhancer strength by using data augmentation and residual convolutional neural network. Zhang TH; Flores M; Huang Y Anal Biochem; 2021 Apr; 618():114120. PubMed ID: 33535061 [TBL] [Abstract][Full Text] [Related]
15. Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks. Sun C; Zhang N; Yu P; Wu X; Li Q; Li T; Li H; Xiao X; Shalmani A; Li L; Che D; Wang X; Zhang P; Chen Z; Liu T; Zhao J; Hua J; Liao M Mol Omics; 2020 Oct; 16(5):455-464. PubMed ID: 32568326 [TBL] [Abstract][Full Text] [Related]
16. A deep learning based two-layer predictor to identify enhancers and their strength. Zhu D; Yang W; Xu D; Li H; Zhao Y; Li D Methods; 2023 Mar; 211():23-30. PubMed ID: 36740001 [TBL] [Abstract][Full Text] [Related]
17. HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction. Liu Y; Wang Z; Yuan H; Zhu G; Zhang Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37539835 [TBL] [Abstract][Full Text] [Related]
18. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models. Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075 [TBL] [Abstract][Full Text] [Related]
19. A deep learning model for DNA enhancer prediction based on nucleotide position aware feature encoding. Hu W; Li Y; Wu Y; Guan L; Li M iScience; 2024 Jun; 27(6):110030. PubMed ID: 38868182 [TBL] [Abstract][Full Text] [Related]
20. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers. Zhang Y; Zhang P; Wu H Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]