BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37760588)

  • 1. Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design.
    Weissmann T; Mansoorian S; May MS; Lettmaier S; Höfler D; Deloch L; Speer S; Balk M; Frey B; Gaipl US; Bert C; Distel LV; Walter F; Belka C; Semrau S; Iro H; Fietkau R; Huang Y; Putz F
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Distribution of Pelvic Nodal Metastases in Prostate Cancer Reveals Potential to Advance and Personalize Pelvic Radiotherapy.
    Filimonova I; Schmidt D; Mansoorian S; Weissmann T; Siavooshhaghighi H; Cavallaro A; Kuwert T; Bert C; Frey B; Distel LV; Lettmaier S; Fietkau R; Putz F
    Front Oncol; 2020; 10():590722. PubMed ID: 33489887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A population-based atlas and clinical target volume for the head-and-neck lymph nodes.
    Poon I; Fischbein N; Lee N; Akazawa P; Xia P; Quivey J; Phillips T
    Int J Radiat Oncol Biol Phys; 2004 Aug; 59(5):1301-11. PubMed ID: 15275713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiatlas approach with local registration goodness weighting for MRI-based electron density mapping of head and neck anatomy.
    Farjam R; Tyagi N; Veeraraghavan H; Apte A; Zakian K; Hunt MA; Deasy JO
    Med Phys; 2017 Jul; 44(7):3706-3717. PubMed ID: 28444772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck.
    Osman AFI; Tamam NM; Yousif YAM
    J Appl Clin Med Phys; 2023 Sep; 24(9):e14015. PubMed ID: 37138549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without Nodal Delineation.
    Xu G; Udupa JK; Tong Y; Odhner D; Cao H; Torigian DA
    Med Phys; 2020 Aug; 47(8):3467-3484. PubMed ID: 32418221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated mapping and N-Staging of thoracic lymph nodes in contrast-enhanced CT scans of the chest using a fully convolutional neural network.
    Iuga AI; Lossau T; Caldeira LL; Rinneburger M; Lennartz S; Große Hokamp N; Püsken M; Carolus H; Maintz D; Klinder T; Persigehl T
    Eur J Radiol; 2021 Jun; 139():109718. PubMed ID: 33962109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics Signature Using Manual Versus Automated Segmentation for Lymph Node Staging of Bladder Cancer.
    Gresser E; Woźnicki P; Messmer K; Schreier A; Kunz WG; Ingrisch M; Stief C; Ricke J; Nörenberg D; Buchner A; Schulz GB
    Eur Urol Focus; 2023 Jan; 9(1):145-153. PubMed ID: 36115774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration.
    Neylon J; Qi X; Sheng K; Staton R; Pukala J; Manon R; Low DA; Kupelian P; Santhanam A
    Med Phys; 2015 Jan; 42(1):232-43. PubMed ID: 25563263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gross Tumor Volume Definition and Comparative Assessment for Esophageal Squamous Cell Carcinoma From 3D
    Yue Y; Li N; Shahid H; Bi D; Liu X; Song S; Ta D
    Front Oncol; 2022; 12():799207. PubMed ID: 35372054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven dose calculation algorithm based on deep U-Net.
    Fan J; Xing L; Dong P; Wang J; Hu W; Yang Y
    Phys Med Biol; 2020 Dec; 65(24):245035. PubMed ID: 33181506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineation of Neck Clinical Target Volume Specific to Nasopharyngeal Carcinoma Based on Lymph Node Distribution and the International Consensus Guidelines.
    Lin L; Lu Y; Wang XJ; Chen H; Yu S; Tian J; Zhou GQ; Zhang LL; Qi ZY; Hu J; Ma J; Sun Y
    Int J Radiat Oncol Biol Phys; 2018 Mar; 100(4):891-902. PubMed ID: 29485068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intentional deep overfit learning for patient-specific dose predictions in adaptive radiotherapy.
    Maniscalco A; Liang X; Lin MH; Jiang S; Nguyen D
    Med Phys; 2023 Sep; 50(9):5354-5363. PubMed ID: 37459122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
    Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X
    Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.