These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37760588)

  • 1. Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal Radiotherapy Target Volume Design.
    Weissmann T; Mansoorian S; May MS; Lettmaier S; Höfler D; Deloch L; Speer S; Balk M; Frey B; Gaipl US; Bert C; Distel LV; Walter F; Belka C; Semrau S; Iro H; Fietkau R; Huang Y; Putz F
    Cancers (Basel); 2023 Sep; 15(18):. PubMed ID: 37760588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Distribution of Pelvic Nodal Metastases in Prostate Cancer Reveals Potential to Advance and Personalize Pelvic Radiotherapy.
    Filimonova I; Schmidt D; Mansoorian S; Weissmann T; Siavooshhaghighi H; Cavallaro A; Kuwert T; Bert C; Frey B; Distel LV; Lettmaier S; Fietkau R; Putz F
    Front Oncol; 2020; 10():590722. PubMed ID: 33489887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A population-based atlas and clinical target volume for the head-and-neck lymph nodes.
    Poon I; Fischbein N; Lee N; Akazawa P; Xia P; Quivey J; Phillips T
    Int J Radiat Oncol Biol Phys; 2004 Aug; 59(5):1301-11. PubMed ID: 15275713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiatlas approach with local registration goodness weighting for MRI-based electron density mapping of head and neck anatomy.
    Farjam R; Tyagi N; Veeraraghavan H; Apte A; Zakian K; Hunt MA; Deasy JO
    Med Phys; 2017 Jul; 44(7):3706-3717. PubMed ID: 28444772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck.
    Osman AFI; Tamam NM; Yousif YAM
    J Appl Clin Med Phys; 2023 Sep; 24(9):e14015. PubMed ID: 37138549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without Nodal Delineation.
    Xu G; Udupa JK; Tong Y; Odhner D; Cao H; Torigian DA
    Med Phys; 2020 Aug; 47(8):3467-3484. PubMed ID: 32418221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated mapping and N-Staging of thoracic lymph nodes in contrast-enhanced CT scans of the chest using a fully convolutional neural network.
    Iuga AI; Lossau T; Caldeira LL; Rinneburger M; Lennartz S; Große Hokamp N; Püsken M; Carolus H; Maintz D; Klinder T; Persigehl T
    Eur J Radiol; 2021 Jun; 139():109718. PubMed ID: 33962109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics Signature Using Manual Versus Automated Segmentation for Lymph Node Staging of Bladder Cancer.
    Gresser E; Woźnicki P; Messmer K; Schreier A; Kunz WG; Ingrisch M; Stief C; Ricke J; Nörenberg D; Buchner A; Schulz GB
    Eur Urol Focus; 2023 Jan; 9(1):145-153. PubMed ID: 36115774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration.
    Neylon J; Qi X; Sheng K; Staton R; Pukala J; Manon R; Low DA; Kupelian P; Santhanam A
    Med Phys; 2015 Jan; 42(1):232-43. PubMed ID: 25563263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gross Tumor Volume Definition and Comparative Assessment for Esophageal Squamous Cell Carcinoma From 3D
    Yue Y; Li N; Shahid H; Bi D; Liu X; Song S; Ta D
    Front Oncol; 2022; 12():799207. PubMed ID: 35372054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven dose calculation algorithm based on deep U-Net.
    Fan J; Xing L; Dong P; Wang J; Hu W; Yang Y
    Phys Med Biol; 2020 Dec; 65(24):245035. PubMed ID: 33181506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineation of Neck Clinical Target Volume Specific to Nasopharyngeal Carcinoma Based on Lymph Node Distribution and the International Consensus Guidelines.
    Lin L; Lu Y; Wang XJ; Chen H; Yu S; Tian J; Zhou GQ; Zhang LL; Qi ZY; Hu J; Ma J; Sun Y
    Int J Radiat Oncol Biol Phys; 2018 Mar; 100(4):891-902. PubMed ID: 29485068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intentional deep overfit learning for patient-specific dose predictions in adaptive radiotherapy.
    Maniscalco A; Liang X; Lin MH; Jiang S; Nguyen D
    Med Phys; 2023 Sep; 50(9):5354-5363. PubMed ID: 37459122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy.
    Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X
    Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.