BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37760677)

  • 1. Scorpion Venom as a Source of Antimicrobial Peptides: Overview of Biomolecule Separation, Analysis and Characterization Methods.
    Nasr S; Borges A; Sahyoun C; Nasr R; Roufayel R; Legros C; Sabatier JM; Fajloun Z
    Antibiotics (Basel); 2023 Aug; 12(9):. PubMed ID: 37760677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the venom from the scorpion Mesobuthus martensii.
    Xu X; Duan Z; Di Z; He Y; Li J; Li Z; Xie C; Zeng X; Cao Z; Wu Y; Liang S; Li W
    J Proteomics; 2014 Jun; 106():162-80. PubMed ID: 24780724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry-based top-down and bottom-up approaches for proteomic analysis of the Moroccan Buthus occitanus scorpion venom.
    Daoudi K; Malosse C; Lafnoune A; Darkaoui B; Chakir S; Sabatier JM; Chamot-Rooke J; Cadi R; Oukkache N
    FEBS Open Bio; 2021 Jul; 11(7):1867-1892. PubMed ID: 33715301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining on scorpion venom biodiversity.
    Rodríguez de la Vega RC; Schwartz EF; Possani LD
    Toxicon; 2010 Dec; 56(7):1155-61. PubMed ID: 19931296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli.
    Tawfik MM; Bertelsen M; Abdel-Rahman MA; Strong PN; Miller K
    mSphere; 2021 May; 6(3):. PubMed ID: 33980680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae).
    Abdel-Rahman MA; Quintero-Hernandez V; Possani LD
    Toxicon; 2013 Nov; 74():193-207. PubMed ID: 23998939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae).
    Santibáñez-López CE; Cid-Uribe JI; Zamudio FZ; Batista CVF; Ortiz E; Possani LD
    Toxicon; 2017 Jul; 133():95-109. PubMed ID: 28478058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species.
    Martinez G; Hograindleur JP; Voisin S; Abi Nahed R; Abd El Aziz TM; Escoffier J; Bessonnat J; Fovet CM; De Waard M; Hennebicq S; Aucagne V; Ray PF; Schmitt E; Bulet P; Arnoult C
    Mol Hum Reprod; 2017 Feb; 23(2):116-131. PubMed ID: 27932550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling and profiling Tityus bahiensis venom: Biochemical analyses of the major toxins.
    Beraldo-Neto E; Vigerelli H; Coelho GR; da Silva DL; Nencioni ALA; Pimenta DC
    J Proteomics; 2023 Mar; 274():104824. PubMed ID: 36646272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis.
    Zhang L; Shi W; Zeng XC; Ge F; Yang M; Nie Y; Bao A; Wu S; E G
    J Proteomics; 2015 Oct; 128():231-50. PubMed ID: 26254009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides.
    Zhong J; Zeng XC; Zeng X; Nie Y; Zhang L; Wu S; Bao A
    J Proteomics; 2017 Jan; 150():40-62. PubMed ID: 27519694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptides from scorpion venoms.
    Harrison PL; Abdel-Rahman MA; Miller K; Strong PN
    Toxicon; 2014 Sep; 88():115-37. PubMed ID: 24951876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive peptides from scorpion venoms: therapeutic scaffolds and pharmacological tools.
    Peter Muiruri K; Zhong J; Yao B; Lai R; Luo L
    Chin J Nat Med; 2023 Jan; 21(1):19-35. PubMed ID: 36641229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the biological activities and proteome of Brazilian scorpion Rhopalurus agamemnon venom.
    Magalhães ACM; de Santana CJC; Melani RD; Domont GB; Castro MS; Fontes W; Roepstorff P; Júnior ORP
    J Proteomics; 2021 Apr; 237():104119. PubMed ID: 33540062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus.
    Bermúdez-Guzmán MJ; Jiménez-Vargas JM; Possani LD; Zamudio F; Orozco-Gutiérrez G; Oceguera-Contreras E; Enríquez-Vara JN; Vazquez-Vuelvas OF; García-Villalvazo PE; Valdez-Velázquez LL
    Toxicon; 2022 Jan; 206():90-102. PubMed ID: 34973996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete de novo sequencing of antimicrobial peptides in the venom of the scorpion Isometrus maculatus.
    Miyashita M; Kitanaka A; Yakio M; Yamazaki Y; Nakagawa Y; Miyagawa H
    Toxicon; 2017 Dec; 139():1-12. PubMed ID: 28941793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Enzymatic Core of Scorpion Venoms.
    Delgado-Prudencio G; Cid-Uribe JI; Morales JA; Possani LD; Ortiz E; Romero-Gutiérrez T
    Toxins (Basel); 2022 Mar; 14(4):. PubMed ID: 35448857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scorpion Venom: Detriments and Benefits.
    Ahmadi S; Knerr JM; Argemi L; Bordon KCF; Pucca MB; Cerni FA; Arantes EC; Çalışkan F; Laustsen AH
    Biomedicines; 2020 May; 8(5):. PubMed ID: 32408604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY.
    Kuzmenkov AI; Vassilevski AA; Kudryashova KS; Nekrasova OV; Peigneur S; Tytgat J; Feofanov AV; Kirpichnikov MP; Grishin EV
    J Biol Chem; 2015 May; 290(19):12195-209. PubMed ID: 25792741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationicity-enhanced analogues of the antimicrobial peptides, AcrAP1 and AcrAP2, from the venom of the scorpion, Androctonus crassicauda, display potent growth modulation effects on human cancer cell lines.
    Du Q; Hou X; Ge L; Li R; Zhou M; Wang H; Wang L; Wei M; Chen T; Shaw C
    Int J Biol Sci; 2014; 10(10):1097-107. PubMed ID: 25332684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.