BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37761218)

  • 21. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W
    Devanthi PVP; El Kadri H; Bowden A; Spyropoulos F; Gkatzionis K
    Food Res Int; 2018 Mar; 105():333-343. PubMed ID: 29433222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation, identification and application on soy sauce fermentation flavor bacteria of CS1.03.
    Jiang X; Xu Y; Ye J; Yang Z; Huang S; Liu Y; Zhou S
    J Food Sci Technol; 2019 Apr; 56(4):2016-2026. PubMed ID: 30996436
    [No Abstract]   [Full Text] [Related]  

  • 23. Comparative Metabolomic Analysis of Moromi Fermented Using Different
    Jo SW; An JH; Kim DS; Yim EJ; Kang HJ; Kim HJ
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234719
    [No Abstract]   [Full Text] [Related]  

  • 24. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.
    Udomsil N; Rodtong S; Choi YJ; Hua Y; Yongsawatdigul J
    J Agric Food Chem; 2011 Aug; 59(15):8401-8. PubMed ID: 21710980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of halotolerant starter microorganisms on chemical characteristics of fermented chum salmon (Oncorhynchus keta) sauce.
    Yoshikawa S; Kurihara H; Kawai Y; Yamazaki K; Tanaka A; Nishikiori T; Ohta T
    J Agric Food Chem; 2010 May; 58(10):6410-7. PubMed ID: 20405947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses.
    Yao S; Tu R; Jin Y; Zhou R; Wu C; Qin J
    J Sci Food Agric; 2024 Apr; 104(6):3559-3569. PubMed ID: 38147410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce.
    Ma J; Nie Y; Zhang L; Xu Y
    Appl Environ Microbiol; 2023 Mar; 89(3):e0188422. PubMed ID: 36802225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment.
    Zhou RY; Huang X; Liu Z; Chua JY; Liu SQ
    Curr Res Food Sci; 2022; 5():1826-1836. PubMed ID: 36276244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunomodulatory effect of halophilic lactic acid bacterium Tetragenococcus halophilus Th221 from soy sauce moromi grown in high-salt medium.
    Masuda S; Yamaguchi H; Kurokawa T; Shirakami T; Tsuji RF; Nishimura I
    Int J Food Microbiol; 2008 Feb; 121(3):245-52. PubMed ID: 18061297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abating biogenic amines and improving the flavor profile of Cantonese soy sauce via co-culturing Tetragenococcus halophilus and Zygosaccharomyces rouxii.
    Qi Q; Huang J; Zhou R; Jin Y; Wu C
    Food Microbiol; 2022 Sep; 106():104056. PubMed ID: 35690450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of different coculture patterns with salt-tolerant yeast strains on the microbial community and metabolites of soy sauce moromi.
    Zhang L; Huang J; Zhou R; Qi Q; Yang M; Peng C; Wu C; Jin Y
    Food Res Int; 2021 Dec; 150(Pt A):110747. PubMed ID: 34865765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation.
    Ye M; Yue T; Yuan Y
    FEMS Yeast Res; 2014 Sep; 14(6):873-82. PubMed ID: 24931623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomics analysis of enzyme systems and pathway changes during the moromi fermentation of soy sauce mash.
    He WB; Hou S; Zeng LY; Tang HB; Tong X; Wu CZ; Liu X; Tan G; Guo LQ; Lin JF
    J Sci Food Agric; 2024 Aug; 104(10):5735-5750. PubMed ID: 38441287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae.
    Sun N; Gao Z; Li S; Chen X; Guo J
    J Sci Food Agric; 2022 Jan; 102(1):175-184. PubMed ID: 34061382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polysaccharide intercellular adhesin and proper phospholipid composition are important for aggregation in
    Yanagihara A; Matsue K; Kobayashi K; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2024 May; 90(5):e0033424. PubMed ID: 38624197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Desired soy sauce characteristics and autolysis of
    Zhou W; Sun-Waterhouse D; Xiong J; Cui C; Wang W; Dong K
    J Food Sci Technol; 2019 Jun; 56(6):2888-2898. PubMed ID: 31205344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods.
    Zhang L; Zhou R; Cui R; Huang J; Wu C
    J Food Sci; 2016 Nov; 81(11):C2639-C2646. PubMed ID: 27741370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii.
    Yao S; Zhou R; Jin Y; Huang J; Wu C
    Food Res Int; 2019 Jul; 121():348-358. PubMed ID: 31108757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Fermentation with
    Cao C; Waterhouse GIN; Sun W; Zhao M; Sun-Waterhouse D; Su G
    Foods; 2023 Dec; 12(24):. PubMed ID: 38137316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptomics to evaluate the influence mechanisms of ethanol on the ester production of Wickerhamomyces anomalus with the induction of lactic acid.
    Cai W; Wan Y; Chen Y; Fan H; Li M; Wu S; Lin P; Zeng T; Luo H; Huang D; Fu G
    Food Microbiol; 2024 Sep; 122():104556. PubMed ID: 38839235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.