BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37761346)

  • 1. An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5.
    Kumar S; Arif T; Ahamad G; Chaudhary AA; Khan S; Ali MAM
    Diagnostics (Basel); 2023 Sep; 13(18):. PubMed ID: 37761346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances Towards Automatic Detection and Classification of Parasites Microscopic Images Using Deep Convolutional Neural Network: Methods, Models and Research Directions.
    Kumar S; Arif T; Alotaibi AS; Malik MB; Manhas J
    Arch Comput Methods Eng; 2023; 30(3):2013-2039. PubMed ID: 36531561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepLeish: a deep learning based support system for the detection of Leishmaniasis parasite from Giemsa-stained microscope images.
    Tekle E; Dese K; Girma S; Adissu W; Krishnamoorthy J; Kwa T
    BMC Med Imaging; 2024 Jun; 24(1):152. PubMed ID: 38890604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic identification of intestinal parasites in reptiles using microscopic stool images and convolutional neural networks.
    Parra C; Grijalva F; Núñez B; Núñez A; Pérez N; Benítez D
    PLoS One; 2022; 17(8):e0271529. PubMed ID: 35925986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Snails and
    Tallam K; Liu ZY; Chamberlin AJ; Jones IJ; Shome P; Riveau G; Ndione RA; Bandagny L; Jouanard N; Eck PV; Ngo T; Sokolow SH; De Leo GA
    Front Public Health; 2021; 9():642895. PubMed ID: 34336754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helminth egg analysis platform (HEAP): An opened platform for microscopic helminth egg identification and quantification based on the integration of deep learning architectures.
    Lee CC; Huang PJ; Yeh YM; Li PH; Chiu CH; Cheng WH; Tang P
    J Microbiol Immunol Infect; 2022 Jun; 55(3):395-404. PubMed ID: 34511389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fine-tuned YOLOv5 deep learning approach for real-time house number detection.
    Taşyürek M; Öztürk C
    PeerJ Comput Sci; 2023; 9():e1453. PubMed ID: 37547390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Empirical Evaluation of Convolutional Networks for Malaria Diagnosis.
    Loddo A; Fadda C; Di Ruberto C
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate automated recognition of the dominant cells from fecal images based on Faster R-CNN.
    Zhang J; Wang X; Ni G; Liu J; Hao R; Liu L; Liu Y; Du X; Xu F
    Sci Rep; 2021 May; 11(1):10361. PubMed ID: 33990662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Based Automatic Grape Downy Mildew Detection.
    Zhang Z; Qiao Y; Guo Y; He D
    Front Plant Sci; 2022; 13():872107. PubMed ID: 35755646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of Supervised Learning for Medical Image Processing.
    Aljuaid A; Anwar M
    SN Comput Sci; 2022; 3(4):292. PubMed ID: 35602289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage Detection of Unwashed Eggs through Video and Deep Learning.
    Huang Y; Luo Y; Cao Y; Lin X; Wei H; Wu M; Yang X; Zhao Z
    Foods; 2023 May; 12(11):. PubMed ID: 37297424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Intestinal Protozoa in Trichrome-Stained Stool Specimens by Use of a Deep Convolutional Neural Network.
    Mathison BA; Kohan JL; Walker JF; Smith RB; Ardon O; Couturier MR
    J Clin Microbiol; 2020 May; 58(6):. PubMed ID: 32295888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures.
    Cao Z; Duan L; Yang G; Yue T; Chen Q
    BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical cell classification with deep-learning algorithms.
    Xu L; Cai F; Fu Y; Liu Q
    Med Biol Eng Comput; 2023 Mar; 61(3):821-833. PubMed ID: 36626113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Memory and Time-Efficient ALPR System Based on YOLOv5.
    Batra P; Hussain I; Ahad MA; Casalino G; Alam MA; Khalique A; Hassan SI
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning.
    Kandel I; Castelli M; Popovič A
    J Imaging; 2020 Nov; 6(11):. PubMed ID: 34460571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD.
    Yazdan SA; Ahmad R; Iqbal N; Rizwan A; Khan AN; Kim DH
    Tomography; 2022 Jul; 8(4):1905-1927. PubMed ID: 35894026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.