BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37761838)

  • 1. Seasonal Developing Xylem Transcriptome Analysis of
    Nguyen TTT; Kim MH; Park EJ; Lee H; Ko JH
    Genes (Basel); 2023 Aug; 14(9):. PubMed ID: 37761838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation.
    Kim MH; Tran TNA; Cho JS; Park EJ; Lee H; Kim DG; Hwang S; Ko JH
    Tree Physiol; 2021 Jul; 41(7):1289-1305. PubMed ID: 33440425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative analysis of wood biomass and developing xylem transcriptome provide insights into mechanisms of lignin biosynthesis in wood formation of Pinus massoniana.
    Ni Z; Han X; Yang Z; Xu M; Feng Y; Chen Y; Xu LA
    Int J Biol Macromol; 2020 Nov; 163():1926-1937. PubMed ID: 32898541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata.
    Li X; Wu HX; Southerton SG
    New Phytol; 2010 Aug; 187(3):764-76. PubMed ID: 20561208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming of gene expression during compression wood formation in pine: coordinated modulation of S-adenosylmethionine, lignin and lignan related genes.
    Villalobos DP; Díaz-Moreno SM; Said el-SS; Cañas RA; Osuna D; Van Kerckhoven SH; Bautista R; Claros MG; Cánovas FM; Cantón FR
    BMC Plant Biol; 2012 Jun; 12():100. PubMed ID: 22747794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Transcriptome Analysis of Stem-Differentiating Xylem Upon Compression Stress in Cunninghamia Lanceolata.
    Zhang Z; Wang H; Wu J; Jin Y; Xiao S; Li T; Liu X; Zhang H; Zhang Z; Su J; Liu J; Wang X; Gao Y; Ma X; Gu L
    Front Genet; 2022; 13():843269. PubMed ID: 35309135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation.
    Li X; Wu HX; Southerton SG
    Gene; 2011 Nov; 487(1):62-71. PubMed ID: 21839815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca).
    Bedon F; Grima-Pettenati J; Mackay J
    BMC Plant Biol; 2007 Mar; 7():17. PubMed ID: 17397551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq.
    Chen J; Chen B; Zhang D
    BMC Genomics; 2015 Mar; 16(1):164. PubMed ID: 25886950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster ait.).
    Plomion C; Pionneau C; Brach J; Costa P; Baillères H
    Plant Physiol; 2000 Jul; 123(3):959-69. PubMed ID: 10889244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda).
    Lorenz WW; Dean JF
    Tree Physiol; 2002 Apr; 22(5):301-10. PubMed ID: 11960754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce.
    Jokipii-Lukkari S; Delhomme N; Schiffthaler B; Mannapperuma C; Prestele J; Nilsson O; Street NR; Tuominen H
    Plant Physiol; 2018 Apr; 176(4):2851-2870. PubMed ID: 29487121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine.
    Pascual MB; Llebrés MT; Craven-Bartle B; Cañas RA; Cánovas FM; Ávila C
    Plant Biotechnol J; 2018 May; 16(5):1094-1104. PubMed ID: 29055073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods.
    Zhang M; Lapierre C; Nouxman NL; Nieuwoudt MK; Smith BG; Chavan RR; McArdle BH; Harris PJ
    Plant Physiol Biochem; 2017 Sep; 118():187-198. PubMed ID: 28646704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics.
    Li X; Wu HX; Southerton SG
    BMC Genomics; 2011 Oct; 12():480. PubMed ID: 21962175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and expression profiling of genes governing lignin biosynthesis in Casuarina equisetifolia L.
    Vikashini B; Shanthi A; Ghosh Dasgupta M
    Gene; 2018 Nov; 676():37-46. PubMed ID: 30201104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Seasonal Dynamics and Molecular Mechanism of Wood Formation in Gymnosperm Trees.
    Nguyen TTT; Bae EK; Tran TNA; Lee H; Ko JH
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracheid cell-wall structures and locations of (1 → 4)-β-D-galactans and (1 → 3)-β-D-glucans in compression woods of radiata pine (Pinus radiata D. Don).
    Zhang M; Chavan RR; Smith BG; McArdle BH; Harris PJ
    BMC Plant Biol; 2016 Sep; 16(1):194. PubMed ID: 27604684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.