BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37762445)

  • 21. Effective drug-target interaction prediction with mutual interaction neural network.
    Li F; Zhang Z; Guan J; Zhou S
    Bioinformatics; 2022 Jul; 38(14):3582-3589. PubMed ID: 35652721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting drug-protein interactions by preserving the graph information of multi source data.
    Wei J; Lu L; Shen T
    BMC Bioinformatics; 2024 Jan; 25(1):10. PubMed ID: 38177981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.
    Jung YS; Kim Y; Cho YR
    Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.
    E Z; Qiao G; Wang G; Li Y
    Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-scaled self-attention for drug-target interaction prediction based on multi-granularity representation.
    Zeng Y; Chen X; Peng D; Zhang L; Huang H
    BMC Bioinformatics; 2022 Aug; 23(1):314. PubMed ID: 35922768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-view contrastive representation learning approach to predicting DTIs via integrating multi-source information.
    He C; Qu Y; Yin J; Zhao Z; Ma R; Duan L
    Methods; 2023 Oct; 218():176-188. PubMed ID: 37586602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Robust Drug-Target Interaction Prediction Framework with Capsule Network and Transfer Learning.
    Huang Y; Huang HY; Chen Y; Lin YC; Yao L; Lin T; Leng J; Chang Y; Zhang Y; Zhu Z; Ma K; Cheng YN; Lee TY; Huang HD
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutual-DTI: A mutual interaction feature-based neural network for drug-target protein interaction prediction.
    Wen J; Gan H; Yang Z; Zhou R; Zhao J; Ye Z
    Math Biosci Eng; 2023 Apr; 20(6):10610-10625. PubMed ID: 37322951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GCMCDTI: Graph convolutional autoencoder framework for predicting drug-target interactions based on matrix completion.
    Li J; Zhang C; Li Z; Nie R; Han P; Yang W; Liao H
    J Bioinform Comput Biol; 2022 Oct; 20(5):2250023. PubMed ID: 36350601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GeNNius: an ultrafast drug-target interaction inference method based on graph neural networks.
    Veleiro U; de la Fuente J; Serrano G; Pizurica M; Casals M; Pineda-Lucena A; Vicent S; Ochoa I; Gevaert O; Hernaez M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38134424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.
    Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph neural network approaches for drug-target interactions.
    Zhang Z; Chen L; Zhong F; Wang D; Jiang J; Zhang S; Jiang H; Zheng M; Li X
    Curr Opin Struct Biol; 2022 Apr; 73():102327. PubMed ID: 35074533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel drug-target interactions via link prediction and network embedding.
    Amiri Souri E; Laddach R; Karagiannis SN; Papageorgiou LG; Tsoka S
    BMC Bioinformatics; 2022 Apr; 23(1):121. PubMed ID: 35379165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.