BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37762525)

  • 1. Unraveling the Antioxidant Activity of
    Xu Y; Li Z; Wang Y; Li C; Zhang M; Chen H; Chen W; Zhong Q; Pei J; Chen W; Haenen GRMM; Moalin M
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts.
    Awad HM; Boersma MG; Vervoort J; Rietjens IM
    Arch Biochem Biophys; 2000 Jun; 378(2):224-33. PubMed ID: 10860540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemical reactivity of (-)-epicatechin quinone mainly resides in its B-ring.
    Zhang M; Vervoort L; Moalin M; Mommers A; Douny C; den Hartog GJM; Haenen GRMM
    Free Radic Biol Med; 2018 Aug; 124():31-39. PubMed ID: 29859347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation.
    Boots AW; Kubben N; Haenen GR; Bast A
    Biochem Biophys Res Commun; 2003 Aug; 308(3):560-5. PubMed ID: 12914787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regioselectivity of glutathione adduct formation with flavonoid quinone/quinone methides is pH-dependent.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2002 Mar; 15(3):343-51. PubMed ID: 11896681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation.
    Galati G; Moridani MY; Chan TS; O'Brien PJ
    Free Radic Biol Med; 2001 Feb; 30(4):370-82. PubMed ID: 11182292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway.
    Liang L; Gao C; Luo M; Wang W; Zhao C; Zu Y; Efferth T; Fu Y
    J Agric Food Chem; 2013 Mar; 61(11):2755-61. PubMed ID: 23419114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.
    Bodell WJ; Ye Q; Pathak DN; Pongracz K
    Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of quercetin methylation for its covalent glutathione and DNA adduct formation.
    van der Woude H; Boersma MG; Alink GM; Vervoort J; Rietjens IM
    Chem Biol Interact; 2006 Apr; 160(3):193-203. PubMed ID: 16516181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An essential difference between the flavonoids monoHER and quercetin in their interplay with the endogenous antioxidant network.
    Jacobs H; Moalin M; Bast A; van der Vijgh WJ; Haenen GR
    PLoS One; 2010 Nov; 5(11):e13880. PubMed ID: 21079733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of quercetin and dihydroquercetin: antioxidant-independent actions on erythrocyte and platelet membrane.
    Chen Y; Deuster P
    Chem Biol Interact; 2009 Nov; 182(1):7-12. PubMed ID: 19555678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential difference in the reactivity of the glutathione adducts of the structurally closely related flavonoids monoHER and quercetin.
    Jacobs H; Moalin M; van Gisbergen MW; Bast A; van der Vijgh WJ; Haenen GR
    Free Radic Biol Med; 2011 Dec; 51(11):2118-23. PubMed ID: 21982895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thiol reactivity of the oxidation product of 3,5,7-trihydroxy-4H-chromen-4-one containing flavonoids.
    Michels G; Haenen GR; Wätjen W; Rietjens S; Bast A
    Toxicol Lett; 2004 Jun; 151(1):105-11. PubMed ID: 15177646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide.
    Boersma MG; Vervoort J; Szymusiak H; Lemanska K; Tyrakowska B; Cenas N; Segura-Aguilar J; Rietjens IM
    Chem Res Toxicol; 2000 Mar; 13(3):185-91. PubMed ID: 10725115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase.
    Li C; Zhang WJ; Choi J; Frei B
    Redox Biol; 2016 Oct; 9():220-228. PubMed ID: 27572418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway.
    Wang W; Ma BL; Xu CG; Zhou XJ
    Phytomedicine; 2020 Apr; 69():153185. PubMed ID: 32120244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and characterization of glutathione adducts derived from polybrominated diphenyl ethers.
    Huang L; Lai Y; Li C; Qiu B; Cai Z
    Chemosphere; 2015 Feb; 120():365-70. PubMed ID: 25192838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.