These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37762633)
21. Cataract-causing G18V eliminates the antagonization by ATP against the crowding-induced destabilization of human γS-crystallin. He Y; Kang J; Song J Biochem Biophys Res Commun; 2020 Sep; 530(3):554-560. PubMed ID: 32753316 [TBL] [Abstract][Full Text] [Related]
22. Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Kong F; King J Protein Sci; 2011 Mar; 20(3):513-28. PubMed ID: 21432932 [TBL] [Abstract][Full Text] [Related]
23. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Mills IA; Flaugh SL; Kosinski-Collins MS; King JA Protein Sci; 2007 Nov; 16(11):2427-44. PubMed ID: 17905830 [TBL] [Abstract][Full Text] [Related]
24. ¹H, ¹³C, and ¹⁵N assignments of wild-type human γS-crystallin and its cataract-related variant γS-G18V. Brubaker WD; Martin RW Biomol NMR Assign; 2012 Apr; 6(1):63-7. PubMed ID: 21735120 [TBL] [Abstract][Full Text] [Related]
25. Structural integrity of the Greek key motif in βγ-crystallins is vital for central eye lens transparency. Vendra VP; Agarwal G; Chandani S; Talla V; Srinivasan N; Balasubramanian D PLoS One; 2013; 8(8):e70336. PubMed ID: 23936409 [TBL] [Abstract][Full Text] [Related]
26. Structural analysis of the mutant protein D26G of human γS-crystallin, associated with Coppock cataract. Karri S; Kasetti RB; Vendra VP; Chandani S; Balasubramanian D Mol Vis; 2013; 19():1231-7. PubMed ID: 23761725 [TBL] [Abstract][Full Text] [Related]
27. ATP differentially antagonizes the crowding-induced destabilization of human γS-crystallin and its four cataract-causing mutants. He Y; Kang J; Song J Biochem Biophys Res Commun; 2020 Dec; 533(4):913-918. PubMed ID: 33004175 [TBL] [Abstract][Full Text] [Related]
28. Multiple Aggregation Pathways in Human γS-Crystallin and Its Aggregation-Prone G18V Variant. Roskamp KW; Montelongo DM; Anorma CD; Bandak DN; Chua JA; Malecha KT; Martin RW Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):2397-2405. PubMed ID: 28444328 [TBL] [Abstract][Full Text] [Related]
29. Dissecting the contributions of β-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Yang Z; Xia Z; Huynh T; King JA; Zhou R Nanoscale; 2014; 6(3):1797-807. PubMed ID: 24352614 [TBL] [Abstract][Full Text] [Related]
30. Identification of the Most Impactful Asparagine Residues for γS-Crystallin Aggregation by Deamidation. Kato K; Nakayoshi T; Kitamura Y; Kurimoto E; Oda A; Ishikawa Y Biochemistry; 2023 Jun; 62(11):1679-1688. PubMed ID: 37155656 [TBL] [Abstract][Full Text] [Related]
31. Gamma crystallins of the human eye lens. Vendra VP; Khan I; Chandani S; Muniyandi A; Balasubramanian D Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):333-43. PubMed ID: 26116913 [TBL] [Abstract][Full Text] [Related]
33. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone. Moreau KL; King JA PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036 [TBL] [Abstract][Full Text] [Related]
34. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. Acosta-Sampson L; King J J Mol Biol; 2010 Aug; 401(1):134-52. PubMed ID: 20621668 [TBL] [Abstract][Full Text] [Related]
35. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Serebryany E; Takata T; Erickson E; Schafheimer N; Wang Y; King JA Protein Sci; 2016 Jun; 25(6):1115-28. PubMed ID: 26991007 [TBL] [Abstract][Full Text] [Related]
36. Cataract-causing mutations L45P and Y46D promote γC-crystallin aggregation by disturbing hydrogen bonds network in the second Greek key motif. Fu C; Xu J; Jia Z; Yao K; Chen X Int J Biol Macromol; 2021 Jan; 167():470-478. PubMed ID: 33278449 [TBL] [Abstract][Full Text] [Related]
37. The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation. Thorn DC; Grosas AB; Mabbitt PD; Ray NJ; Jackson CJ; Carver JA J Mol Biol; 2019 Feb; 431(3):483-497. PubMed ID: 30552875 [TBL] [Abstract][Full Text] [Related]
38. Increased hydrophobic surface exposure in the cataract-related G18V variant of human γS-crystallin. Khago D; Wong EK; Kingsley CN; Freites JA; Tobias DJ; Martin RW Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):325-32. PubMed ID: 26459004 [TBL] [Abstract][Full Text] [Related]
39. A Comparative Study of the Impact of Calcium Ion on Structure, Aggregation and Chaperone Function of Human αA-crystallin and its Cataract- Causing R12C Mutant. Saba S; Ghahramani M; Yousefi R Protein Pept Lett; 2017; 24(11):1048-1058. PubMed ID: 28782478 [TBL] [Abstract][Full Text] [Related]
40. Cataract-causing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain. Qi LB; Hu LD; Liu H; Li HY; Leng XY; Yan YB Protein Cell; 2016 Jul; 7(7):501-15. PubMed ID: 27318838 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]