These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37762703)

  • 1. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer.
    Skiba EA; Shavyrkina NA; Skiba MA; Mironova GF; Budaeva VV
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock.
    Sakovich GV; Skiba EA; Budaeva VV; Gladysheva EK; Aleshina LA
    Dokl Biochem Biophys; 2017 Nov; 477(1):357-359. PubMed ID: 29297121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-Up of Biosynthesis Process of Bacterial Nanocellulose.
    Shavyrkina NA; Budaeva VV; Skiba EA; Mironova GF; Bychin NV; Gismatulina YA; Kashcheyeva EI; Sitnikova AE; Shilov AI; Kuznetsov PS; Sakovich GV
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-standardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass.
    Skiba EА; Gladysheva EK; Golubev DS; Budaeva VV; Aleshina LА; Sakovich GV
    Carbohydr Polym; 2021 Jan; 252():117178. PubMed ID: 33183625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static Culture Combined with Aeration in Biosynthesis of Bacterial Cellulose.
    Shavyrkina NA; Skiba EA; Kazantseva AE; Gladysheva EK; Budaeva VV; Bychin NV; Gismatulina YA; Kashcheyeva EI; Mironova GF; Korchagina AA; Pavlov IN; Sakovich GV
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Nanocellulose Nitrates.
    Budaeva VV; Gismatulina YA; Mironova GF; Skiba EA; Gladysheva EK; Kashcheyeva EI; Baibakova OV; Korchagina AA; Shavyrkina NA; Golubev DS; Bychin NV; Pavlov IN; Sakovich GV
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31783661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions.
    Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and Hydrolysis Behavior of Celluloses of Different Origin.
    Kashcheyeva EI; Gismatulina YA; Mironova GF; Gladysheva EK; Budaeva VV; Skiba EA; Zolotuhin VN; Shavyrkina NA; Kortusov AN; Korchagina AA
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial nanocellulose production and application: a 10-year overview.
    Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms.
    Sharma C; Bhardwaj NK
    Int J Biol Macromol; 2019 Jul; 132():166-177. PubMed ID: 30928367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.