BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37763375)

  • 21. Improved Research on Two-Step Thermal Stress Calculation Method for Asphalt Mixture: Extended Creep Compliance Test.
    He X; Li P; Lin B; Jiang S
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone.
    Manda K; Xie S; Wallace RJ; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1631-1640. PubMed ID: 27090522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Characterization of Viscoelastic Behaviors of Nano-TiO
    Wu C; Li L; Wang W; Gu Z
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33406807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Prediction Model on Viscoelastic Fatigue Damage of Asphalt Mixture.
    Li L; Jiang X; Lin Y; Yan H
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32867202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interrelation of creep and relaxation: a modeling approach for ligaments.
    Lakes RS; Vanderby R
    J Biomech Eng; 1999 Dec; 121(6):612-5. PubMed ID: 10633261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic Parameters of Asphalt Mixtures Identified in Static and Dynamic Tests.
    Mackiewicz P; Szydło A
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31261675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the parameters of rock viscoelastic creep model and analysis of parameter degradation.
    Zheng Z; Yang Y; Pan C
    Sci Rep; 2023 Apr; 13(1):5739. PubMed ID: 37029171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Conversion Method for the Dynamic Storage Modulus and Relaxation Modulus of Hydroxy-Terminated Polybutadiene (HTPB) Propellants.
    Ji Y; Cao L; Li Z; Chen G; Cao P; Liu T
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments.
    Ashrafi H; Shariyat M
    J Biomed Phys Eng; 2016 Jun; 6(2):109-18. PubMed ID: 27672630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From Complex Modulus E* to Creep Compliance D(t): Experimental and Modeling Study.
    Daoudi A; Perraton D; Dony A; Carter A
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Laplace approach in microrheology.
    Li Q; Peng X; Chen D; McKenna GB
    Soft Matter; 2020 Apr; 16(14):3378-3383. PubMed ID: 32211631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic properties of demineralized dentin matrix.
    Pashley DH; Agee KA; Wataha JC; Rueggeberg F; Ceballos L; Itou K; Yoshiyama M; Carvalho RM; Tay FR
    Dent Mater; 2003 Dec; 19(8):700-6. PubMed ID: 14511727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of Creep Behavior of Particulate Composites with Focus on Interfacial Adhesion Effect.
    Rech J; Ramakers-van Dorp E; Möginger B; Hausnerova B
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Fiber Reinforcement on Creep and Recovery Behavior of Cement-Emulsified Asphalt Binder.
    Qin X; Zhu S; Luo R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Homogeneity and Viscoelastic Behaviour of Bitumen Film in Asphalt Mixtures Containing RAP.
    Liphardt A; Radziszewski P; Król J
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.
    Pandey V; Holm S
    Phys Rev E; 2016 Sep; 94(3-1):032606. PubMed ID: 27739858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.