BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37763438)

  • 1. Long-Term Oxidation Susceptibility in Ambient Air of the Semiconductor Kesterite Cu
    Lejda K; Ziąbka M; Olejniczak Z; Janik JF
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu
    Lejda K; Janik JF; Perzanowski M; Stelmakh S; Pałosz B
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetism of Kesterite Cu
    Lejda K; Drygaś M; Janik JF; Szczytko J; Twardowski A; Olejniczak Z
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogravimetric/Thermal-Mass Spectroscopy Insight into Oxidation Propensity of Various Mechanochemically Made Kesterite Cu
    Lejda K; Partyka J; Janik JF
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles.
    Xia Y; Chen Z; Zhang Z; Fang X; Liang G
    Nanoscale Res Lett; 2014; 9(1):208. PubMed ID: 24855463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precisely Controlled Synthesis of High Quality Kesterite Cu2ZnSnS4 Thin Film via Co-Electrodeposited CuZnSn Alloy Film.
    Hreid T; Tiong VT; Cai M; Wang H; Will G
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5701-6. PubMed ID: 27427618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffolds via in situ multi-wavelength Raman-monitored annealing.
    Wang Z; Elouatik S; Demopoulos GP
    Phys Chem Chem Phys; 2016 Oct; 18(42):29435-29446. PubMed ID: 27738685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu
    Mkawi EM; Al-Hadeethi Y; Arkook B; Bekyarova E
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.
    Chen S; Walsh A; Gong XG; Wei SH
    Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion exchange induced formation of kesterite copper zinc tin sulphide-copper zinc tin selenide nanoheterostructures.
    Yin D; Li Q; Liu Y; Swihart MT
    Nanoscale; 2021 Mar; 13(9):4828-4834. PubMed ID: 33650624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial.
    Nwambaekwe KC; Masikini M; Mathumba P; Ramoroka ME; Duoman S; John-Denk VS; Iwuoha EI
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous-based Binary Sulfide Nanoparticle Inks for Cu
    Wang H; Yasin A; Quitoriano NJ; Demopoulos GP
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31561636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics.
    Kush P; Ujjain SK; Mehra NC; Jha P; Sharma RK; Deka S
    Chemphyschem; 2013 Aug; 14(12):2793-9. PubMed ID: 23801647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-propagating high-temperature synthesis of (Ho
    Balabanov SS; Filofeev SV; Ivanov MG; Kalinina EG; Kuznetsov DK; Permin DA; Rostokina EY
    Heliyon; 2019 Apr; 5(4):e01519. PubMed ID: 31049431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Intermediate Band in I
    Liu Q; Cai Z; Han D; Chen S
    Sci Rep; 2018 Jan; 8(1):1604. PubMed ID: 29371660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorder induced band gap lowering in kesterite type Cu
    Fritsch D; Schorr S
    J Phys Condens Matter; 2024 Jun; 36(37):. PubMed ID: 38821076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent engineering to regulate the phase of copper zinc tin sulfide nanocrystals.
    Zhu Y; Qing H; Dong W; Dong M; Shen T; Cui J
    Dalton Trans; 2022 Nov; 51(45):17328-17337. PubMed ID: 36321603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Hydrothermal Synthesis of Cu
    Henríquez R; Nogales PS; Moreno PG; Cartagena EM; Bongiorno PL; Navarrete-Astorga E; Dalchiele EA
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and surface chemistry of high quality wurtzite and kesterite Cu2ZnSnS4 nanocrystals using tin(II) 2-ethylhexanoate as a new tin source.
    Gabka G; Bujak P; Gryszel M; Ostrowski A; Malinowska K; Zukowska GZ; Agnese F; Pron A; Reiss P
    Chem Commun (Camb); 2015 Aug; 51(65):12985-8. PubMed ID: 26176023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.