These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37763456)

  • 1. Study on Magnetization Roasting Kinetics of High-Iron and Low-Silicon Red Mud.
    Xie L; Hao J; Hu C; Zhang H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud.
    Yuan S; Liu X; Gao P; Han Y
    J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature thermal conversion of Al-substituted goethite in gibbsitic bauxite for maximum alumina extraction.
    Zhou G; Wang Y; Qi T; Zhou Q; Liu G; Peng Z; Li X
    RSC Adv; 2022 Jan; 12(7):4162-4174. PubMed ID: 35425423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An active dealkalization of red mud with roasting and water leaching.
    Zhu X; Li W; Guan X
    J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues.
    Liu W; Yang J; Xiao B
    J Hazard Mater; 2009 Jan; 161(1):474-8. PubMed ID: 18457916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Iron Bauxite Residue (Red Mud) Valorization Using Hydrochemical Conversion of Goethite to Magnetite.
    Shoppert A; Valeev D; Diallo MM; Loginova I; Beavogui MC; Rakhmonov A; Ovchenkov Y; Pankratov D
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass waste as a clean reductant for iron recovery of iron tailings by magnetization roasting.
    Deng J; Ning XA; Shen J; Ou W; Chen J; Qiu G; Wang Y; He Y
    J Environ Manage; 2022 Sep; 317():115435. PubMed ID: 35751253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of iron mineral transformation to reduce red mud tailings.
    Li LY
    Waste Manag; 2001; 21(6):525-34. PubMed ID: 11478619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficiency Iron Extraction from Low-Grade Siderite via a Conveyor Bed Magnetization Roasting-Magnetic Separation Process: Kinetics Research and Applications.
    Jiu S; Zhao B; Yang C; Chen Y; Cheng F
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of electrolytic iron from red mud in alkaline media.
    Maihatchi Ahamed A; Pons MN; Ricoux Q; Goettmann F; Lapicque F
    J Environ Manage; 2020 Jul; 266():110547. PubMed ID: 32310115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficiation of Low-Grade Hematite Iron Ore Fines by Magnetizing Roasting and Magnetic Separation.
    Kukkala PC; Kumar S; Nirala A; Khan MA; Alkahtani MQ; Islam S
    ACS Omega; 2024 Feb; 9(7):7634-7642. PubMed ID: 38405511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating red mud for the fabrication of cementitious material by analyzing the thermal evolution of hydrogarnets.
    Wang B; Wu J; Sun X; Jiang J; Yang Q; Li Q; Ye Z; Guo J; Wang X
    Environ Sci Pollut Res Int; 2023 May; 30(22):62993-63004. PubMed ID: 36952160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts.
    Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y
    J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Transformation Behavior of the Aluminosilicate Phase During High-Pressure Hydrothermal Reduction of High-Iron Red Mud.
    Wang X; Wang Y; Jin H; Li J; Wang X
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):186-193. PubMed ID: 35381871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaning Disposal of High-Iron Bauxite Residue Using Hydrothermal Hydrogen Reduction.
    Zhou G; Wang Y; Qi T; Zhou Q; Liu G; Peng Z; Li X
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):163-168. PubMed ID: 35394141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation.
    Hou S; Wang W; Zhang B; Li W; Guo C; Li Q; Li E
    ChemistryOpen; 2024 Feb; 13(2):e202300059. PubMed ID: 37902712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis.
    Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W
    J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcification-carbonation method for red mud processing.
    Li R; Zhang T; Liu Y; Lv G; Xie L
    J Hazard Mater; 2016 Oct; 316():94-101. PubMed ID: 27214002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Modelling the Solid-Liquid Extraction Process of Scandium from Red Mud: Influence of Acid Composition, Contact Time and Temperature.
    Daminescu D; Duteanu N; Ciopec M; Negrea A; Negrea P; Nemeş NS; Pascu B; Lazău R; Berbecea A
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation Behavior of Iron Minerals in High-Iron Red Mud During High-Pressure Hydrothermal Reduction.
    Wang H; Wang Y; Jin H; Li J; Wang X
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):76-85. PubMed ID: 35267044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.