These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37763562)

  • 1. Advances in Tunable Bandgaps of Piezoelectric Phononic Crystals.
    Wang Y; Xu X; Li L
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of complete bandgaps in a piezoelectric slab covered with periodically structured coatings.
    Zou K; Ma TX; Wang YS
    Ultrasonics; 2016 Feb; 65():268-76. PubMed ID: 26442435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation and tuning of hypersonic bandgaps in colloidal crystals.
    Cheng W; Wang J; Jonas U; Fytas G; Stefanou N
    Nat Mater; 2006 Oct; 5(10):830-6. PubMed ID: 16951677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on bandgaps in two-dimensional phononic crystal with two resonators.
    Gao N; Wu JH; Yu L
    Ultrasonics; 2015 Feb; 56():287-93. PubMed ID: 25216625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness dependences of acoustic bandgaps with different generation mechanisms in phononic crystals immersed in water.
    Kang HS; Kim WG; Yoon SW; Lee KI
    J Acoust Soc Am; 2019 Jan; 145(1):EL25. PubMed ID: 30710958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
    Vatanabe SL; Paulino GH; Silva EC
    J Acoust Soc Am; 2014 Aug; 136(2):494-501. PubMed ID: 25096084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Graphene Phononic Crystals for Heat Phonon Engineering.
    Masrura HM; Kareekunnan A; Liu F; Ramaraj SG; Ellrott G; Hammam AMM; Muruganathan M; Mizuta H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32630087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals.
    Huang ZG; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):365-70. PubMed ID: 15857044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.
    Singh BK; Pandey PC
    Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable and tunable flat graphene photonic crystal circuits.
    Chen ZH; Tan QL; Lao J; Liang Y; Huang XG
    Nanoscale; 2015 Jul; 7(25):10912-7. PubMed ID: 26061901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Graphene Phononic Crystal.
    Kirchhof JN; Weinel K; Heeg S; Deinhart V; Kovalchuk S; Höflich K; Bolotin KI
    Nano Lett; 2021 Mar; 21(5):2174-2182. PubMed ID: 33622035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental analyses of tunable Fabry-Perot resonators using piezoelectric phononic crystals.
    Ponge MF; Dubus B; Granger C; Vasseur JO; Thi MP; Hladky-Hennion AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1114-21. PubMed ID: 26067046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing.
    Elmadih W; Syam WP; Maskery I; Chronopoulos D; Leach R
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31212647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of photonic crystals with thermally adjustable pseudo-gaps.
    Li C; Xue Q; Ji Z; Li Y; Zhang H; Li D
    Soft Matter; 2020 Mar; 16(12):3063-3068. PubMed ID: 32133472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Losses in Ferroelectric Materials.
    Liu G; Zhang S; Jiang W; Cao W
    Mater Sci Eng R Rep; 2015 Mar; 89():1-48. PubMed ID: 25814784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials.
    Li ZN; Wang YZ; Wang YS
    J Acoust Soc Am; 2021 Aug; 150(2):891. PubMed ID: 34470290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Color Circulation in a Bilayer Photonic Crystal by Increasing the Incident Angle.
    Wu S; Liu T; Tang B; Li L; Zhang S
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10171-10177. PubMed ID: 30757893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.