These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37763604)
1. The Low-Cycle Fatigue Behavior, Microstructure Evolution, and Life Prediction of SS304: Influence of Temperature. Mei T; Wang Q; Liu M; Jiang Y; Zou T; Cai Y Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763604 [TBL] [Abstract][Full Text] [Related]
2. Dynamic Softening and Hardening Behavior and the Micro-Mechanism of a TC31 High Temperature Titanium Alloy Sheet within Hot Deformation. Dang K; Wang K; Liu G Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772047 [TBL] [Abstract][Full Text] [Related]
3. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738 [TBL] [Abstract][Full Text] [Related]
4. Microstructure Evolution and Deformation Behavior of Extruded Mg-5Al-0.6Sc Alloy during Room and Elevated Temperature Tension Revealed by Ex-Situ EBSD and VPSC. Zhang L; Luan S; Yuan S; Wang J; Chen L; Jin P Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444848 [TBL] [Abstract][Full Text] [Related]
5. High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint. Kim Y; Hwang W Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31818031 [TBL] [Abstract][Full Text] [Related]
6. Low-Cycle Fatigue Damage Mechanism and Life Prediction of High-Strength Compacted Graphite Cast Iron at Different Temperatures. Wu Q; Tan B; Pang J; Shi F; Jiang A; Zou C; Zhang Y; Li S; Zhang Y; Li X; Zhang Z Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274656 [TBL] [Abstract][Full Text] [Related]
7. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys. Liu K; Wang S; Pan L; Chen XG Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676566 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Sun Y; Wu H; Du H; Yao Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330 [TBL] [Abstract][Full Text] [Related]
9. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Mughrabi H Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Shiraiwa T; Briffod F; Enoki M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226 [TBL] [Abstract][Full Text] [Related]
11. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading. Yan Z; Wang D; Wang W; Zhou J; He X; Dong P; Zhang H; Sun L Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597278 [TBL] [Abstract][Full Text] [Related]
12. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Chai G; Zhou N Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of Fatigue-Life Extension Due to Dynamic Strain Aging in Low-Carbon Steel at High Temperature. Fang Z; Wang L; Yu F; He Y; Wang Z Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336401 [TBL] [Abstract][Full Text] [Related]
14. Influence of Heat Treatment on Cyclic Response of Nickel-Based Superalloy Inconel 718 up to Very-High Cycle Regime. Zhao M; Zhao Z; Liu L; Luo G; Chen W Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255929 [TBL] [Abstract][Full Text] [Related]
15. FEM Simulations of Fatigue Crack Initiation in the Oligocrystalline Microstructure of Stents. Lasko G; Schmauder S; Yang Y; Weiss S; Dogahe K Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687693 [TBL] [Abstract][Full Text] [Related]
16. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Li S; Jiang W; Xie X; Dong Z Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991 [TBL] [Abstract][Full Text] [Related]
17. Cyclic Deformation and Correspondent Crack Initiation at Low-Stress Amplitudes in Mg⁻Gd⁻Y⁻Zr Alloy. He C; Wu Y; Peng L; Su N; Li X; Yang K; Liu Y; Yuan S; Tian R Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30513615 [TBL] [Abstract][Full Text] [Related]
18. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path. Liu X; Zhang S; Bao Y; Zhang Z; Yue Z Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297 [TBL] [Abstract][Full Text] [Related]
19. Tensile and High Cycle Fatigue Performance at Room and Elevated Temperatures of Laser Powder Bed Fusion Manufactured Hastelloy X. Jiao Z; Zhang L; Huang S; Zhang J; Li X; He Y; Wu S Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793316 [TBL] [Abstract][Full Text] [Related]
20. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading. Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]