These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37763611)

  • 1. Polymers and Polymer-Based Materials for the Detection of (Nitro-)explosives.
    Taniya OS; Khasanov AF; Sadieva LK; Santra S; Nikonov IL; Al-Ithawi WKA; Kovalev IS; Kopchuk DS; Zyryanov GV; Ranu BC
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence based explosive detection: from mechanisms to sensory materials.
    Sun X; Wang Y; Lei Y
    Chem Soc Rev; 2015 Nov; 44(22):8019-61. PubMed ID: 26335504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes.
    Desai V; Panchal M; Dey S; Panjwani F; Jain VK
    J Fluoresc; 2022 Jan; 32(1):67-79. PubMed ID: 34687396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzo[ghi]perylene and coronene as ratiometric fluorescence probes for the selective sensing of nitroaromatic explosives.
    Hussain E; Li Y; Cheng C; Zhuo H; Shahzad SA; Ali S; Ismail M; Qi H; Yu C
    Talanta; 2020 Jan; 207():120316. PubMed ID: 31594608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives.
    Sarkar K; Salinas Y; Campos I; Martínez-Máñez R; Marcos MD; Sancenón F; Amorós P
    Chempluschem; 2013 Jul; 78(7):684-694. PubMed ID: 31986617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrazone connected stable luminescent covalent-organic polymer for ultrafast detection of nitro-explosives.
    Asad M; Wang YJ; Wang S; Dong QG; Li LK; Majeed S; Wang QY; Zang SQ
    RSC Adv; 2021 Dec; 11(62):39270-39277. PubMed ID: 35492474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of nitroaromatic explosives by new D-π-A sensing fluorophores on the basis of the pyrimidine scaffold.
    Verbitskiy EV; Baranova AA; Lugovik KI; Shafikov MZ; Khokhlov KO; Cheprakova EM; Rusinov GL; Chupakhin ON; Charushin VN
    Anal Bioanal Chem; 2016 Jun; 408(15):4093-101. PubMed ID: 27020930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fingerprinting of Nitroaromatic Explosives Realized by Aphen-functionalized Titanium Dioxide.
    Xie G; Liu B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent Polymers Conspectus.
    Ahumada G; Borkowska M
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.
    Sathish V; Ramdass A; Velayudham M; Lu KL; Thanasekaran P; Rajagopal S
    Dalton Trans; 2017 Dec; 46(48):16738-16769. PubMed ID: 29125159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives.
    Li D; Lv P; Han XW; Jia Z; Zheng M; Feng HT
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds.
    Bal M; Köse A; Özpaça Ö; Köse M
    J Fluoresc; 2023 Jul; 33(4):1443-1455. PubMed ID: 36752930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review.
    Zarejousheghani M; Lorenz W; Vanninen P; Alizadeh T; Cämmerer M; Borsdorf H
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31096617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics.
    Kumar V; Maiti B; Chini MK; De P; Satapathi S
    Sci Rep; 2019 May; 9(1):7269. PubMed ID: 31086230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye@bio-MOF-1 Composite as a Dual-Emitting Platform for Enhanced Detection of a Wide Range of Explosive Molecules.
    Wang C; Tian L; Zhu W; Wang S; Wang P; Liang Y; Zhang W; Zhao H; Li G
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20076-20085. PubMed ID: 28540729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels.
    Kartha KK; Sandeep A; Praveen VK; Ajayaghosh A
    Chem Rec; 2015 Feb; 15(1):252-65. PubMed ID: 25351991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition.
    Gao R; Wei XS; Zhao W; Xie A; Dong W
    Anal Chim Acta; 2022 Feb; 1192():339343. PubMed ID: 35057934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A luminescent heterometallic metal-organic framework for the naked-eye discrimination of nitroaromatic explosives.
    Qi X; Jin Y; Li N; Wang Z; Wang K; Zhang Q
    Chem Commun (Camb); 2017 Sep; 53(74):10318-10321. PubMed ID: 28872166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric Turn-On Fluorophore Displacement Ensembles for Nitroaromatic Explosives Detection.
    Lee JY; Root HD; Ali R; An W; Lynch VM; Bähring S; Kim IS; Sessler JL; Park JS
    J Am Chem Soc; 2020 Nov; 142(46):19579-19587. PubMed ID: 33063999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.