These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37763818)

  • 1. pH Gradients in Spatially Non-Uniform AC Electric Fields around the Charging Frequency; A Study of Two Different Geometries and Electrode Passivation.
    Tahmasebi A; Habibi S; Collins JL; An R; Dehdashti E; Minerick AR
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency.
    An R; Massa K; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields.
    An R; Minerick AR
    Langmuir; 2022 May; 38(19):5977-5986. PubMed ID: 35507010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction and suppression of cell lysis in an electrokinetic microfluidic system.
    Habibi S; Lee HY; Moncada-Hernandez H; Minerick AR
    Electrophoresis; 2022 Jun; 43(12):1322-1336. PubMed ID: 35306692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially variant red blood cell crenation in alternating current non-uniform fields.
    An R; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Mar; 8(2):021803. PubMed ID: 24753734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system.
    Ding H; Liu W; Shao J; Ding Y; Zhang L; Niu J
    Langmuir; 2013 Oct; 29(39):12093-103. PubMed ID: 23998619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes.
    Park S; Beskok A
    Anal Chem; 2008 Apr; 80(8):2832-41. PubMed ID: 18318510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis.
    Wang K; Leville S; Behdani B; Silvera Batista CA
    Soft Matter; 2022 Aug; 18(32):5949-5959. PubMed ID: 35920440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays.
    Hu N; Yang J; Qian S; Joo SW; Zheng X
    Biomicrofluidics; 2011 Sep; 5(3):34121-3412112. PubMed ID: 22662046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aligned microfluidic contactless dielectrophoresis device fabricated by single-layer imprinting on cyclic olefin copolymer.
    Salahi A; Varhue WB; Farmehini V; Hyler AR; Schmelz EM; Davalos RV; Swami NS
    Anal Bioanal Chem; 2020 Jun; 412(16):3881-3889. PubMed ID: 32372273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of frequency-dependent electrokinetic forces on tin oxide nanobelts in low frequency electric fields.
    Kumar S; Hesketh PJ
    Nanotechnology; 2010 Aug; 21(32):325501. PubMed ID: 20647628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation.
    Zhang Z; Luo Y; Nie X; Yu D; Xing X
    Analyst; 2020 Aug; 145(16):5603-5614. PubMed ID: 32776070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic particle trapping in microfluidic wells using conductive nanofiber mats.
    West JH; Mondal TK; Williams SJ
    Electrophoresis; 2024 Sep; ():. PubMed ID: 39223919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.