These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37763824)

  • 21. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic rheology of non-Newtonian liquids.
    Girardo S; Cingolani R; Pisignano D
    Anal Chem; 2007 Aug; 79(15):5856-61. PubMed ID: 17602569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.
    Soulis JV; Fytanidis DK; Lampri OP; Giannoglou GD
    Cardiol Res; 2016 Apr; 7(2):66-79. PubMed ID: 28197271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring sperm cell rheotaxis in microfluidic channel: the role of flow and viscosity.
    Puri DB; Jacob P; Hemadri V; Banerjee A; Tripathi S
    Phys Biol; 2024 Sep; 21(6):. PubMed ID: 39278237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow.
    Vaseghnia H; Jettestuen E; Giljarhus KET; Aursjø O; Hiorth A
    Phys Rev E; 2024 Jul; 110(1-2):015305. PubMed ID: 39160911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.
    Nandy S; Tarbell JM
    Biorheology; 1987; 24(5):483-500. PubMed ID: 2965604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 4D flow MRI evaluation of the impact of shear-dependent fluid viscosity on in vitro Fontan circulation flow.
    Cheng AL; Wee CP; Pahlevan NM; Wood JC
    Am J Physiol Heart Circ Physiol; 2019 Dec; 317(6):H1243-H1253. PubMed ID: 31585044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries.
    Lakzian E; Akbarzadeh P
    Biomed Mater Eng; 2020; 30(5-6):525-540. PubMed ID: 31771034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow].
    Wang X; Stoltz JF
    J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model.
    Perktold K; Resch M; Florian H
    J Biomech Eng; 1991 Nov; 113(4):464-75. PubMed ID: 1762445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical investigation of the effects of blood rheology and wall elasticity in abdominal aortic aneurysm under pulsatile flow conditions.
    Bilgi C; Atalık K
    Biorheology; 2019; 56(1):51-71. PubMed ID: 31045509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endovascular Treatment of Intracranial Aneurysm: The Importance of the Rheological Model in Blood Flow Simulations.
    Boniforti MA; Vittucci G; Magini R
    Bioengineering (Basel); 2024 May; 11(6):. PubMed ID: 38927758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models.
    Ali D; Sen S
    Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.