These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 37763824)
41. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases. Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336 [TBL] [Abstract][Full Text] [Related]
42. A modification of Murray's law for shear-thinning rheology. McGah PM; Capobianchi M J Biomech Eng; 2015 May; 137(5):054503. PubMed ID: 25565456 [TBL] [Abstract][Full Text] [Related]
43. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. Deplano V; Knapp Y; Bailly L; Bertrand E J Biomech; 2014 Apr; 47(6):1262-9. PubMed ID: 24612986 [TBL] [Abstract][Full Text] [Related]
44. Deformation of a Capsule in a Power-Law Shear Flow. Tian FB Comput Math Methods Med; 2016; 2016():7981386. PubMed ID: 27840656 [TBL] [Abstract][Full Text] [Related]
45. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related]
46. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A; Larimi MM; Ranjbar AA Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216 [TBL] [Abstract][Full Text] [Related]
47. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. Yi H; Yang Z; Johnson M; Bramlage L; Ludwig B Phys Fluids (1994); 2022 Oct; 34(10):103101. PubMed ID: 36212224 [TBL] [Abstract][Full Text] [Related]
48. Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study. Tiwari A; Chauhan SS Cardiovasc Eng Technol; 2019 Mar; 10(1):155-172. PubMed ID: 30302623 [TBL] [Abstract][Full Text] [Related]
49. Assessing the effect of manufacturing defects and non-Newtonian blood model on flow behaviors of additively manufactured Gyroid TPMS structures. Seehanam S; Chanchareon W; Promoppatum P Heliyon; 2023 May; 9(5):e15711. PubMed ID: 37180920 [TBL] [Abstract][Full Text] [Related]
50. Bubble motion through a generalized power-law fluid flowing in a vertical tube. Mukundakrishnan K; Eckmann DM; Ayyaswamy PS Ann N Y Acad Sci; 2009 Apr; 1161():256-67. PubMed ID: 19426324 [TBL] [Abstract][Full Text] [Related]
51. Study of wall effect on the flow of milk in capillary. Yamamoto A; Mineshita T; Toyosaki T Biorheology; 1983; 20(5):623-34. PubMed ID: 6677282 [TBL] [Abstract][Full Text] [Related]
52. Statistical-mechanical theory of rheology: Lennard-Jones fluids. Laghaei R; Eskandari Nasrabad A; Eu BC J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931 [TBL] [Abstract][Full Text] [Related]
53. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone. Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293 [TBL] [Abstract][Full Text] [Related]
54. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
55. Axial shear rate: A hemorheological factor for erythrocyte aggregation under Womersley flow in an elastic vessel based on numerical simulation. Lee CA; Farooqi HMU; Paeng DG Comput Biol Med; 2023 May; 157():106767. PubMed ID: 36933414 [TBL] [Abstract][Full Text] [Related]
56. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
57. Influence of right coronary artery motion, flow pulsatility and non-Newtonian rheology on wall shear stress metrics. Kandangwa P; Torii R; Gatehouse PD; Sherwin SJ; Weinberg PD Front Bioeng Biotechnol; 2022; 10():962687. PubMed ID: 36017352 [TBL] [Abstract][Full Text] [Related]
58. 4D flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis. Riva A; Sturla F; Caimi A; Pica S; Giese D; Milani P; Palladini G; Lombardi M; Redaelli A; Votta E J Biomech; 2021 Apr; 119():110308. PubMed ID: 33631666 [TBL] [Abstract][Full Text] [Related]
59. Dependence of capillary flow resistance upon the width of the marginal layer and the viscosity of the axial core. Braasch D Biorheology Suppl; 1984; 1():135-43. PubMed ID: 6591966 [TBL] [Abstract][Full Text] [Related]
60. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer. Allahham A; Stewart P; Marriott J; Mainwaring DE Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]