BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37763891)

  • 1. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold.
    LeMon MB; Douma CC; Burke GS; Bowser MT
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.
    Berenguel-Alonso M; Sabés-Alsina M; Morató R; Ymbern O; Rodríguez-Vázquez L; Talló-Parra O; Alonso-Chamarro J; Puyol M; López-Béjar M
    SLAS Technol; 2017 Jan; ():2472630316684625. PubMed ID: 28346053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices.
    Anciaux SK; Bowser MT
    Electrophoresis; 2020 Feb; 41(3-4):225-234. PubMed ID: 31816114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips.
    Rodrigues RG; Condelipes PGM; Rosa RR; Chu V; Conde JP
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reinforced PDMS mold for hot embossing of cyclic olefin polymer in the fabrication of microfluidic chips.
    Qin Y; Kreutz JE; Schneider T; Yen GS; Shah ES; Wu L; Chiu DT
    Lab Chip; 2022 Nov; 22(23):4729-4734. PubMed ID: 36367074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations.
    Douma CC; Bowser MT
    Anal Chem; 2023 Dec; 95(50):18379-18387. PubMed ID: 38060457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.
    Berenguel-Alonso M; Sabés-Alsina M; Morató R; Ymbern O; Rodríguez-Vázquez L; Talló-Parra O; Alonso-Chamarro J; Puyol M; López-Béjar M
    SLAS Technol; 2017 Oct; 22(5):507-517. PubMed ID: 28944724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels.
    Amarasekara CA; Rathnayaka C; Athapattu US; Zhang L; Choi J; Park S; Nagel AC; Soper SA
    J Chromatogr A; 2021 Feb; 1638():461892. PubMed ID: 33477027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices.
    Zhang N; Liu J; Zhang H; Kent NJ; Diamond D; D Gilchrist M
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31510027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a Hot-Embossing Metal Micro-Mold through Laser Shock Imprinting.
    Yang H; Hao J; Wang H; Ding M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoplastic Microfluidics.
    Kristiansen PM; Karpik A; Werder J; Guilherme M; Grob M
    Methods Mol Biol; 2022; 2373():39-55. PubMed ID: 34520005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of 3D printing to integrate microchip electrophoresis with amperometric detection.
    Selemani MA; Martin RS
    Anal Bioanal Chem; 2024 Apr; ():. PubMed ID: 38581532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis.
    Barbaresco F; Cocuzza M; Pirri CF; Marasso SL
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32629794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed metal molds for hot embossing plastic microfluidic devices.
    Lin TY; Do T; Kwon P; Lillehoj PB
    Lab Chip; 2017 Jan; 17(2):241-247. PubMed ID: 27934978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method using two-step hot embossing technique with shrinking for fabrication of cross microchannels on PMMA substrate and its application to electrophoretic separation of amino acids in functional drinks.
    Wiriyakun N; Nacapricha D; Chantiwas R
    Talanta; 2016 Dec; 161():574-582. PubMed ID: 27769450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a polyurethane acrylate/polyimide-based polymer mold for a hot embossing process.
    Kim KI; Han KS; Yang KY; Kim HS; Lee H
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3417-20. PubMed ID: 22849136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Micro-Lens Array Mold by Micro Ball End-Milling and Its Hot Embossing.
    Gao P; Liang Z; Wang X; Zhou T; Xie J; Li S; Shen W
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.