BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37763904)

  • 1. Centrifugal Microfluidic Synthesis of Nickel Sesquioxide Nanoparticles.
    Mou J; Wang C; Zhao H; Xiong C; Ren Y; Wang J; Jiang D; Zheng Z
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Investigation of Cell Encapsulation for Multiplexing Diagnostic Assays Using Novel Centrifugal Microfluidic Emulsification and Separation Platform.
    Ren Y; Leung WWF
    Micromachines (Basel); 2016 Jan; 7(2):. PubMed ID: 30407391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Active Centrifugal Pump for Microfluidic CD Platforms.
    Al-Halhouli A; Far BE; Albagdady A; Al-Faqheri W
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.
    Joseph K; Ibrahim F; Cho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3217-20. PubMed ID: 26736977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular design of centrifugal microfluidic system and its application in nucleic acid screening.
    Cai G; Huang Y; Chen B; Shen Y; Shi X; Peng B; Mi S; Huang J
    Talanta; 2023 Jul; 259():124486. PubMed ID: 37060723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation.
    Ukita Y; Oguro T; Takamura Y
    Biomed Microdevices; 2017 Jun; 19(2):24. PubMed ID: 28378147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-assisted preparation of PLGA nanoparticles for drug delivery purposes: experimental study and computational fluid dynamic simulation.
    Shokoohinia P; Hajialyani M; Sadrjavadi K; Akbari M; Rahimi M; Khaledian S; Fattahi A
    Res Pharm Sci; 2019 Oct; 14(5):459-470. PubMed ID: 31798663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-Printed Centrifugal Pump Driven by Magnetic Force in Applications for Microfluidics in Biological Analysis.
    Jo B; Morimoto Y; Takeuchi S
    Adv Healthc Mater; 2022 Dec; 11(24):e2200593. PubMed ID: 35608243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods.
    Agha A; Waheed W; Stiharu I; Nerguizian V; Destgeer G; Abu-Nada E; Alazzam A
    Discov Nano; 2023 Feb; 18(1):18. PubMed ID: 36800044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lab on a bead with oscillatory centrifugal microfluidics for fast and complete mixing enables fast and accurate biomedical assays.
    Williams DE; Li W; Chandrasekhar M; Corazza CMOW; Deijs GS; Djoko L; Govind B; Jose E; Kwon YJ; Lowe T; Panchal A; Reshef G; Vargas MJT; Simpson MC
    Sci Rep; 2024 Apr; 14(1):8637. PubMed ID: 38622241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full integration of nucleic acid extraction and detection into a centrifugal microfluidic chip employing chitosan-modified microspheres.
    Zhao X; Huang Y; Li X; Yang W; Lv Y; Sun W; Huang J; Mi S
    Talanta; 2022 Dec; 250():123711. PubMed ID: 35809491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.
    Zhu Y; Chen Y; Meng X; Wang J; Lu Y; Xu Y; Cheng J
    Anal Chem; 2017 Sep; 89(17):9315-9321. PubMed ID: 28764326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
    Kuśnieruk S; Wojnarowicz J; Chodara A; Chudoba T; Gierlotka S; Lojkowski W
    Beilstein J Nanotechnol; 2016; 7():1586-1601. PubMed ID: 28144510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics.
    Pishbin E; Eghbal M; Fakhari S; Kazemzadeh A; Navidbakhsh M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Rapid Micromixer for Centrifugal Microfluidic Platforms.
    Cai Z; Xiang J; Chen H; Wang W
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.