These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37763933)

  • 21. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system.
    Mottaghi S; Nazari M; Fattahi SM; Nazari M; Babamohammadi S
    Biomed Microdevices; 2020 Sep; 22(3):61. PubMed ID: 32876861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic generation of uniform water droplets using gas as the continuous phase.
    Jiang K; Lu AX; Dimitrakopoulos P; DeVoe DL; Raghavan SR
    J Colloid Interface Sci; 2015 Jun; 448():275-9. PubMed ID: 25744861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oscillating dispersed-phase co-flow microfluidic droplet generation: jet length reduction effect.
    Shams Khorrami A; Rezai P
    Soft Matter; 2018 Dec; 14(48):9870-9876. PubMed ID: 30474087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of wall velocity slip on droplet generation in microfluidic T-junctions.
    Li X; He L; Lv S; Xu C; Qian P; Xie F; Liu M
    RSC Adv; 2019 Jul; 9(40):23229-23240. PubMed ID: 35514511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall.
    Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W
    Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
    Filatov NA; Evstrapov AA; Bukatin AS
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.
    Dewandre A; Rivero-Rodriguez J; Vitry Y; Sobac B; Scheid B
    Sci Rep; 2020 Dec; 10(1):21616. PubMed ID: 33303772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the fluid injection configuration on droplet size in a microfluidic T junction.
    Carrier O; Funfschilling D; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013003. PubMed ID: 24580316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control.
    Ibrahim AM; Padovani JI; Howe RT; Anis YH
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays.
    Duchamp M; Arnaud M; Bobisse S; Coukos G; Harari A; Renaud P
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance tuning of microfluidic flow-focusing droplet generators.
    Lashkaripour A; Rodriguez C; Ortiz L; Densmore D
    Lab Chip; 2019 Mar; 19(6):1041-1053. PubMed ID: 30762047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emulsion templating of poly(lactic acid) particles: droplet formation behavior.
    Vladisavljević GT; Duncanson WJ; Shum HC; Weitz DA
    Langmuir; 2012 Sep; 28(36):12948-54. PubMed ID: 22860633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device.
    Hu Q; Jiang T; Jiang H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32033467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.