These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37764104)

  • 1. Oxygen Exposure and Tolerance Shapes the Cell Wall-Associated Lipids of the Skin Commensal
    Popa I; Touboul D; Andersson T; Fuentes-Lemus E; Santerre C; Davies MJ; Lood R
    Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764104
    [No Abstract]   [Full Text] [Related]  

  • 2. Solution Structure of the
    Stødkilde K; Nielsen JT; Petersen SV; Paetzold B; Brüggemann H; Mulder FAA; Andersen CBF
    Front Cell Infect Microbiol; 2022; 12():803004. PubMed ID: 35223541
    [No Abstract]   [Full Text] [Related]  

  • 3. Common skin bacteria protect their host from oxidative stress through secreted antioxidant RoxP.
    Andersson T; Ertürk Bergdahl G; Saleh K; Magnúsdóttir H; Stødkilde K; Andersen CBF; Lundqvist K; Jensen A; Brüggemann H; Lood R
    Sci Rep; 2019 Mar; 9(1):3596. PubMed ID: 30837648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel enzyme with antioxidant capacity produced by the ubiquitous skin colonizer Propionibacterium acnes.
    Allhorn M; Arve S; Brüggemann H; Lood R
    Sci Rep; 2016 Nov; 6():36412. PubMed ID: 27805044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commensal
    Almoughrabie S; Cau L; Cavagnero K; O'Neill AM; Li F; Roso-Mares A; Mainzer C; Closs B; Kolar MJ; Williams KJ; Bensinger SJ; Gallo RL
    Sci Adv; 2023 Aug; 9(33):eadg6262. PubMed ID: 37595033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive detection and quantification of the secreted bacterial benevolence factor RoxP using a capacitive biosensor: A possible early detection system for oxidative skin diseases.
    Ertürk G; Hedström M; Mattiasson B; Ruzgas T; Lood R
    PLoS One; 2018; 13(3):e0193754. PubMed ID: 29494704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta).
    Armada I; Hachero-Cruzado I; Mazuelos N; Ríos JL; Manchado M; Cañavate JP
    Phytochemistry; 2013 Nov; 95():224-33. PubMed ID: 23954077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing a Cell-Free Transcription-Translation Platform for
    Fábrega MJ; Knödlseder N; Nevot G; Sanvicente M; Toloza L; Santos-Moreno J; Güell M
    ACS Biomater Sci Eng; 2023 Sep; 9(9):5101-5110. PubMed ID: 34971313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum.
    Yongmanitchai W; Ward OP
    J Gen Microbiol; 1993 Mar; 139(3):465-72. PubMed ID: 20050416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity.
    Kim YG; Lee JH; Lee J
    Phytomedicine; 2021 Oct; 91():153710. PubMed ID: 34461422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic antibacterial combination of Sapindoside A and B changes the fatty acid compositions and membrane properties of Cutibacterium acnes.
    Wei MP; Yu H; Guo YH; Cheng YL; Xie YF; Yao WR
    Microbiol Res; 2021 Nov; 255():126924. PubMed ID: 34837782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of plant lipids with 14 kDa phospholipase A2 enzymes.
    Vishwanath BS; Eichenberger W; Frey FJ; Frey BM
    Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):93-9. PubMed ID: 8947472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress.
    Bejaoui F; Salas JJ; Nouairi I; Smaoui A; Abdelly C; Martínez-Force E; Youssef NB
    J Plant Physiol; 2016 Jul; 198():32-8. PubMed ID: 27131842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The di- and triesters of the lipids of steer and human meibomian glands.
    Nicolaides N; Santos EC
    Lipids; 1985 Jul; 20(7):454-67. PubMed ID: 4033365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid remodeling of the soil lipidome in response to a drying-rewetting event.
    Couvillion SP; Danczak RE; Naylor D; Smith ML; Stratton KG; Paurus VL; Bloodsworth KJ; Farris Y; Schmidt DJ; Richardson RE; Bramer LM; Fansler SJ; Nakayasu ES; McDermott JE; Metz TO; Lipton MS; Jansson JK; Hofmockel KS
    Microbiome; 2023 Feb; 11(1):34. PubMed ID: 36849975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation in vivo of 1-14C-palmitic acid into placental and fetal liver lipids of the rabbit.
    Elphick MC; Hull D
    Biol Neonate; 1977; 32(1-2):24-32. PubMed ID: 901879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avidumicin, a novel cyclic bacteriocin, produced by Cutibacterium avidum shows anti-Cutibacterium acnes activity.
    Koizumi J; Nakase K; Noguchi N; Nakaminami H
    J Antibiot (Tokyo); 2023 Sep; 76(9):511-521. PubMed ID: 37264118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic turnover of fatty acids and acylglycerols in rat sciatic nerve.
    Yao JK
    J Neurochem; 1985 Aug; 45(2):589-95. PubMed ID: 4009176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis.
    Nakamura K; O'Neill AM; Williams MR; Cau L; Nakatsuji T; Horswill AR; Gallo RL
    Sci Rep; 2020 Dec; 10(1):21237. PubMed ID: 33277548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of skin sebum medium and inhibition of lipase activity in
    Nakase K; Momose M; Yukawa T; Nakaminami H
    Access Microbiol; 2022; 4(10):acmi000397. PubMed ID: 36415741
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.