These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37764119)

  • 21. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.
    Al-Attar S; Westra ER; van der Oost J; Brouns SJ
    Biol Chem; 2011 Apr; 392(4):277-89. PubMed ID: 21294681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches.
    Yin Y; Yang B; Entwistle S
    mSystems; 2019 Sep; 4(5):. PubMed ID: 31506266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems.
    Heler R; Marraffini LA; Bikard D
    Mol Microbiol; 2014 Jul; 93(1):1-9. PubMed ID: 24806524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas systems and RNA-guided interference.
    Barrangou R
    Wiley Interdiscip Rev RNA; 2013; 4(3):267-78. PubMed ID: 23520078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles.
    Chellapandi P; Ranjani J
    Syst Synth Biol; 2015 Sep; 9(3):97-106. PubMed ID: 26279704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Survey on the CRISPR arrays in Lactobacillus helveticus genomes.
    Scaltriti E; Carminati D; Cortimiglia C; Ramoni R; Sørensen KI; Giraffa G; Zago M
    Lett Appl Microbiol; 2019 May; 68(5):394-402. PubMed ID: 30762876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B.
    Maier LK; Lange SJ; Stoll B; Haas KA; Fischer S; Fischer E; Duchardt-Ferner E; Wöhnert J; Backofen R; Marchfelder A
    RNA Biol; 2013 May; 10(5):865-74. PubMed ID: 23594992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the structures of confirmed and questionable CRISPR loci in 325 Staphylococcus genomes.
    Zhang M; Bi C; Wang M; Fu H; Mu Z; Zhu Y; Yan Z
    J Basic Microbiol; 2019 Sep; 59(9):901-913. PubMed ID: 31347199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation into the prevalent CRISPR-Cas systems among the Aeromonas genus.
    Baliga P; Shekar M; Tg P; Sk G
    J Basic Microbiol; 2021 Oct; 61(10):874-882. PubMed ID: 34486151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
    Almendros C; Guzmán NM; García-Martínez J; Mojica FJ
    Nat Microbiol; 2016 Jun; 1(8):16081. PubMed ID: 27573106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.
    Gophna U; Kristensen DM; Wolf YI; Popa O; Drevet C; Koonin EV
    ISME J; 2015 Sep; 9(9):2021-7. PubMed ID: 25710183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mechanisms of CRISPR-Cas spacer acquisition.
    McGinn J; Marraffini LA
    Nat Rev Microbiol; 2019 Jan; 17(1):7-12. PubMed ID: 30171202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of CRISPR loci in lactic acid bacteria genomes.
    Horvath P; Coûté-Monvoisin AC; Romero DA; Boyaval P; Fremaux C; Barrangou R
    Int J Food Microbiol; 2009 Apr; 131(1):62-70. PubMed ID: 18635282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange.
    Lopatina A; Medvedeva S; Artamonova D; Kolesnik M; Sitnik V; Ispolatov Y; Severinov K
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180092. PubMed ID: 30905291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genomic sequence of the type II-A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system in
    Mizuki H; Shimoyama Y; Ishikawa T; Sasaki M
    J Oral Microbiol; 2022; 14(1):2008153. PubMed ID: 34992734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages.
    Lier C; Baticle E; Horvath P; Haguenoer E; Valentin AS; Glaser P; Mereghetti L; Lanotte P
    Front Genet; 2015; 6():214. PubMed ID: 26124774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.
    Ivanov YV; Shariat N; Register KB; Linz B; Rivera I; Hu K; Dudley EG; Harvill ET
    BMC Genomics; 2015 Oct; 16():863. PubMed ID: 26502932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.