These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37764187)
1. Effect of Growth Stages and Lactic Acid Fermentation on Anti-Nutrients and Nutritional Attributes of Spinach ( Naseem A; Akhtar S; Ismail T; Qamar M; Sattar DE; Saeed W; Esatbeyoglu T; Bartkiene E; Rocha JM Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764187 [TBL] [Abstract][Full Text] [Related]
2. Lactic Acid Fermentation Ameliorates Intrinsic Toxicants in Younis M; Akhtar S; Ismail T; Qamar M; Sattar DE; Saeed W; Mubarak MS; Bartkiene E; Rocha JM Foods; 2024 Jun; 13(12):. PubMed ID: 38928768 [No Abstract] [Full Text] [Related]
3. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Layla A; Syed QA; Zahoor T; Shahid M Int Microbiol; 2024 Jun; 27(3):753-764. PubMed ID: 37700156 [TBL] [Abstract][Full Text] [Related]
4. The Comparative Effect of Lactic Acid Fermentation and Germination on the Levels of Neurotoxin, Anti-Nutrients, and Nutritional Attributes of Sweet Blue Pea ( Arshad N; Akhtar S; Ismail T; Saeed W; Qamar M; Özogul F; Bartkiene E; Rocha JM Foods; 2023 Jul; 12(15):. PubMed ID: 37569119 [TBL] [Abstract][Full Text] [Related]
5. Peptone-Induced Physio-Biochemical Modulations Reduce Cadmium Toxicity and Accumulation in Spinach ( Emanuil N; Akram MS; Ali S; El-Esawi MA; Iqbal M; Alyemeni MN Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33352672 [TBL] [Abstract][Full Text] [Related]
6. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Singh S; Agrawal M; Agrawal SB Photosynth Res; 2013 Jul; 115(2-3):123-38. PubMed ID: 23686471 [TBL] [Abstract][Full Text] [Related]
8. Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO₂ extraction. Jaime L; Vázquez E; Fornari T; López-Hazas Mdel C; García-Risco MR; Santoyo S; Reglero G J Sci Food Agric; 2015 Mar; 95(4):722-9. PubMed ID: 24930815 [TBL] [Abstract][Full Text] [Related]
9. Effect of harvest time on the levels of phytochemicals, free radical-scavenging activity, α-amylase inhibition and bile acid-binding capacity of spinach (Spinacia oleracea). Barkat N; Singh J; Jayaprakasha GK; Patil BS J Sci Food Agric; 2018 Jul; 98(9):3468-3477. PubMed ID: 29282747 [TBL] [Abstract][Full Text] [Related]
10. High and low oxalate content in spinach: an investigation of accumulation patterns. Mirahmadi SF; Hassandokht M; Fatahi R; Naghavi MR; Rezaei K J Sci Food Agric; 2022 Jan; 102(2):836-843. PubMed ID: 34233027 [TBL] [Abstract][Full Text] [Related]
11. Moderate water stress prevents the postharvest decline of ascorbic acid in spinach (Spinacia oleracea L.) but not in spinach beet (Beta vulgaris L.). Mogren LM; Beacham AM; Reade JP; Monaghan JM J Sci Food Agric; 2016 Jul; 96(9):2976-80. PubMed ID: 26381599 [TBL] [Abstract][Full Text] [Related]
12. Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). Koh E; Charoenprasert S; Mitchell AE J Agric Food Chem; 2012 Mar; 60(12):3144-50. PubMed ID: 22393895 [TBL] [Abstract][Full Text] [Related]
13. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach ( Ma J; Saleem MH; Yasin G; Mumtaz S; Qureshi FF; Ali B; Ercisli S; Alhag SK; Ahmed AE; Vodnar DC; Hussain I; Marc RA; Chen F Front Plant Sci; 2022; 13():973740. PubMed ID: 36061765 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Lee BS; So HM; Kim S; Kim JK; Kim JC; Kang DM; Ahn MJ; Ko YJ; Kim KH Arch Pharm Res; 2022 Nov; 45(11):795-805. PubMed ID: 36401778 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of antioxidant properties and mineral composition of Purslane (Portulaca oleracea L.) at different growth stages. Uddin MK; Juraimi AS; Ali ME; Ismail MR Int J Mol Sci; 2012; 13(8):10257-10267. PubMed ID: 22949859 [TBL] [Abstract][Full Text] [Related]
16. A Genome-Wide Association Study Reveals the Genetic Mechanisms of Nutrient Accumulation in Spinach. Ji N; Liu Z; She H; Xu Z; Zhang H; Fang Z; Qian W Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397162 [TBL] [Abstract][Full Text] [Related]
17. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants. Lester GE; Makus DJ; Hodges DM; Jifon JL J Agric Food Chem; 2013 Jul; 61(29):7019-27. PubMed ID: 23834651 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Payne AC; Mazzer A; Clarkson GJ; Taylor G Food Sci Nutr; 2013 Nov; 1(6):439-44. PubMed ID: 24804054 [TBL] [Abstract][Full Text] [Related]
19. Effects of oxalic acid on availability of zinc from spinach leaves and zinc sulfate to rats. Welch RM; House WA; Van Campen D J Nutr; 1977 Jun; 107(6):929-33. PubMed ID: 864521 [TBL] [Abstract][Full Text] [Related]
20. Effect of low temperature on flavonoids, oxygen radical absorbance capacity values and major components of winter sweet spinach (Spinacia oleracea L.). Watanabe M; Ayugase J J Sci Food Agric; 2015 Aug; 95(10):2095-104. PubMed ID: 25243392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]