BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37764306)

  • 1. The Competition between 4-Nitrophenol Reduction and BH
    Varshney S; Meyerstein D; Bar-Ziv R; Zidki T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT Study of the BH
    Raju Karimadom B; Varshney S; Zidki T; Meyerstein D; Kornweitz H
    Chemphyschem; 2022 Jul; 23(13):e202200069. PubMed ID: 35403783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction.
    Zhang X; Jin S; Zhang Y; Wang L; Liu Y; Duan Q
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Co
    Huang X; Wu D; Cheng D
    J Colloid Interface Sci; 2017 Dec; 507():429-436. PubMed ID: 28806662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Systematic Investigation of
    Pozun ZD; Rodenbusch SE; Keller E; Tran K; Tang W; Stevenson KJ; Henkelman G
    J Phys Chem C Nanomater Interfaces; 2013 Apr; 117(15):7598-7604. PubMed ID: 23616909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic nanocomposite (Ag-Au, Ag-Pd, Au-Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol.
    Velpula S; Beedu SR; Rupula K
    Int J Biol Macromol; 2021 Nov; 190():159-169. PubMed ID: 34480903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble" Palladium Nanoparticles.
    Iben Ayad A; Luart D; Ould Dris A; Guénin E
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32549394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineral-modulated Co catalyst with enhanced adsorption and dissociation of BH
    Zhang S; Zhong L; Xu Z; Hu J; Tang A; Zuo X
    Chemosphere; 2022 Mar; 291(Pt 2):132871. PubMed ID: 34774906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimetallic Ag-Au nanowires: synthesis, growth mechanism, and catalytic properties.
    Fu H; Yang X; Jiang X; Yu A
    Langmuir; 2013 Jun; 29(23):7134-42. PubMed ID: 23679079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications.
    Hunge YM; Yadav AA; Kang SW; Kim H; Fujishima A; Terashima C
    J Hazard Mater; 2021 Oct; 419():126453. PubMed ID: 34323738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity.
    Neppolian B; Wang C; Ashokkumar M
    Ultrason Sonochem; 2014 Nov; 21(6):1948-53. PubMed ID: 24582660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Au, Ag, and Au-Ag Bimetallic Nanoparticles Using
    Khan M; Al-Hamoud K; Liaqat Z; Shaik MR; Adil SF; Kuniyil M; Alkhathlan HZ; Al-Warthan A; Siddiqui MRH; Mondeshki M; Tremel W; Khan M; Tahir MN
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32962292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.
    Kumar M; Deka S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16071-81. PubMed ID: 25171089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step green synthesis of composition-tunable Pt-Cu alloy nanowire networks with high catalytic activity for 4-nitrophenol reduction.
    Zhang Y; Xia Y; Yan S; Han J; Chen Y; Zhai W; Gao Z
    Dalton Trans; 2018 Dec; 47(48):17461-17468. PubMed ID: 30499571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt nanoparticle supported on layered double hydroxide: Effect of nanoparticle size on catalytic hydrogen production by NaBH
    Mahpudz A; Lim SL; Inokawa H; Kusakabe K; Tomoshige R
    Environ Pollut; 2021 Dec; 290():117990. PubMed ID: 34523515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of sol-immobilized bimetallic Au-Pd/TiO
    Alshammari K; Niu Y; Palmer RE; Dimitratos N
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2176):20200057. PubMed ID: 32623991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol.
    An X; Long Y; Ni Y
    Carbohydr Polym; 2017 Jan; 156():253-258. PubMed ID: 27842820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges.
    Kamal T; Asiri AM; Ali N
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120019. PubMed ID: 34126398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki-Miyaura Reactions.
    Liu F; Liu X
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.